AtCoder Grand Contest 005F - Many Easy Problems
$n \leq 200000$的树,从树上选$k$个点的一个方案会对$Ans_k$产生大小为“最小的包括这$k$个点的连通块大小”的贡献。求每个$Ans_k$。膜924844033。
看每个点对$Ans_k$的贡献,那就是他在最小$k$连通块里的方案数。画画图可以发现,以他为根时,如果$k$个点都在他同一个儿子的子树里,那就是不包括这个点的,否则就是包括这个点的。“正难♂取反”,所以一个点的贡献就是$\binom{n}{k}-\sum \binom{s(i,j)}{k}$,其中$s(i,j)$表示以$i$为根,子树$j$的大小。这样可以$n^2$。
现在$Ans_k=n\binom{n}{k}-\sum \binom{s(i,j)}{k}$,瓶颈在后面那坨。由于$s(i,j)$的取值只有$0~n$且只有$2(n-1)$个,因此可以dfs一次记$cnt_i=\sum_{s(j,k)=i}1$,有$\sum \binom{s(i,j)}{k}=\sum_{i=1}^n cnt_i\binom{i}{k}$。记$\sum \binom{s(i,j)}{k}=B_k$,因此$k!B_k=\sum_{i=1}^ncnt_i\frac{i!}{(i-k)!}$,棒,一卷积。
924844033原根5。
//#include<iostream>
#include<cstring>
#include<cstdio>
//#include<time.h>
//#include<complex>
#include<algorithm>
#include<stdlib.h>
using namespace std; #define LL long long
int qread()
{
char c; int s=; while ((c=getchar())<'' || c>'');
do s=s*+c-''; while ((c=getchar())>='' && c<=''); return s;
} //Pay attention to '-' and LL of qread!!!! int n;
#define maxn 531111
const int mod=,G=; int rev[maxn];
struct Edge{int to,next;}edge[maxn<<]; int first[maxn],le=;
void in(int x,int y) {Edge &e=edge[le]; e.to=y; e.next=first[x]; first[x]=le++;}
void insert(int x,int y) {in(x,y); in(y,x);} int B[maxn],A[maxn],D[maxn],Ans[maxn],cnt[maxn],fac[maxn],inv[maxn];
int C(int n,int m) {return 1ll*fac[n]*inv[m]%mod*inv[n-m]%mod;} int powmod(int a,int b)
{
int ans=;
while (b) {if (b&) ans=1ll*ans*a%mod; a=1ll*a*a%mod; b>>=;}
return ans;
} void dft(int *a,int n,int type)
{
int wei=; while ((<<wei)!=n) wei++;
for (int i=;i<n;i++)
{
rev[i]=;
for (int j=;j<wei;j++) rev[i]|=((i>>j)&)<<(wei-j-);
}
for (int i=;i<n;i++) if (i<rev[i]) a[i]^=a[rev[i]]^=a[i]^=a[rev[i]];
for (int i=;i<n;i<<=)
{
int t=powmod(G,(mod-)/(i*));
if (type==-) t=powmod(t,mod-);
for (int j=,p=i<<;j<n;j+=p)
{
int tmp=;
for (int k=;k<i;k++,tmp=1ll*tmp*t%mod)
{
int now=1ll*tmp*a[j+k+i]%mod;
a[j+k+i]=(a[j+k]+mod-now)%mod;
a[j+k]=(a[j+k]+now)%mod;
}
}
}
if (type==-)
{
int ni=powmod(n,mod-);
for (int i=;i<n;i++) a[i]=1ll*a[i]*ni%mod;
}
} void mul(int *a,int *b,int *c,int n)
{
dft(a,n,); dft(b,n,);
for (int i=;i<n;i++) c[i]=1ll*a[i]*b[i]%mod;
dft(c,n,-);
} int size[maxn];
void dfs(int x,int fa)
{
size[x]=;
for (int i=first[x];i;i=edge[i].next)
{
Edge &e=edge[i]; if (e.to==fa) continue;
dfs(e.to,x); size[x]+=size[e.to];
cnt[size[e.to]]++; cnt[n-size[e.to]]++;
}
} int main()
{
n=qread();
for (int i=,x,y;i<n;i++) {x=qread(); y=qread(); insert(x,y);}
dfs(,); fac[]=; for (int i=;i<=n;i++) fac[i]=1ll*fac[i-]*i%mod;
inv[n]=powmod(fac[n],mod-); for (int i=n;i;i--) inv[i-]=1ll*inv[i]*i%mod;
for (int i=;i<=n;i++) B[n-i+]=1ll*cnt[i]*fac[i]%mod;
for (int i=;i<=n;i++) A[i]=inv[i];
int mm=; for (;mm<=(n+n);mm<<=);
mul(B,A,D,mm);
for (int i=;i<=n;i++) Ans[i]=1ll*inv[i]*D[n+-i]%mod; for (int i=;i<=n;i++) Ans[i]=(1ll*n*C(n,i)%mod+mod-Ans[i])%mod;
for (int i=;i<=n;i++) printf("%d\n",Ans[i]);
return ;
}
AtCoder Grand Contest 005F - Many Easy Problems的更多相关文章
- AtCoder Grand Contest 005
AtCoder Grand Contest 005 A - STring 翻译 给定一个只包含\(ST\)的字符串,如果出现了连续的\(ST\),就把他删去,然后所有位置前移.问最后剩下的串长. 题解 ...
- AtCoder Grand Contest 006
AtCoder Grand Contest 006 吐槽 这套题要改个名字,叫神仙结论题大赛 A - Prefix and Suffix 翻译 给定两个串,求满足前缀是\(S\),后缀是\(T\),并 ...
- AtCoder Grand Contest 012
AtCoder Grand Contest 012 A - AtCoder Group Contest 翻译 有\(3n\)个人,每一个人有一个强大值(看我的假翻译),每三个人可以分成一组,一组的强大 ...
- AtCoder Grand Contest 011
AtCoder Grand Contest 011 upd:这篇咕了好久,前面几题是三周以前写的... AtCoder Grand Contest 011 A - Airport Bus 翻译 有\( ...
- AtCoder Grand Contest 031 简要题解
AtCoder Grand Contest 031 Atcoder A - Colorful Subsequence description 求\(s\)中本质不同子序列的个数模\(10^9+7\). ...
- AtCoder Grand Contest 010
AtCoder Grand Contest 010 A - Addition 翻译 黑板上写了\(n\)个正整数,每次会擦去两个奇偶性相同的数,然后把他们的和写会到黑板上,问最终能否只剩下一个数. 题 ...
- AtCoder Grand Contest 009
AtCoder Grand Contest 009 A - Multiple Array 翻译 见洛谷 题解 从后往前考虑. #include<iostream> #include< ...
- AtCoder Grand Contest 008
AtCoder Grand Contest 008 A - Simple Calculator 翻译 有一个计算器,上面有一个显示按钮和两个其他的按钮.初始时,计算器上显示的数字是\(x\),现在想把 ...
- AtCoder Grand Contest 007
AtCoder Grand Contest 007 A - Shik and Stone 翻译 见洛谷 题解 傻逼玩意 #include<cstdio> int n,m,tot;char ...
随机推荐
- Java异常处理:如何写出“正确”但被编译器认为有语法错误的程序
文章的标题看似自相矛盾,然而我在"正确"二字上打了引号.我们来看一个例子,关于Java异常处理(Exception Handling)的一些知识点. 看下面这段程序.方法pleas ...
- Codeforces Round #318 (Div. 2) B Bear and Three Musketeers (暴力)
算一下复杂度.发现可以直接暴.对于u枚举a和b,判断一下是否连边,更新答案. #include<bits/stdc++.h> using namespace std; int n,m; ; ...
- 【转】SpringBoot 2.0.0新版和SpringBoot1.5.2版本中Tomcat配置的差别
https://blog.csdn.net/wd2014610/article/details/79587161 2018年春SpringBoot 2.0.0 新版本有了很多新的改变,其中Tomcat ...
- robotframework接口测试实例
*** Settings *** Library Collections Library RequestsLibrary *** Test Cases *** test Create Session ...
- React中 checkbox 与 label 标签的搭配
用<label>标签替代checkbox的点击样子,点击<label>实际上就是点击checkbox checkbox的checked值会跟着一起变 <input typ ...
- 常用JavaScript正则表达式整理
在表单验证中,正则表达式书写起来特别繁琐,本文整理了15个常用的JavaScript正则表达式,其中包括用户名.密码强度.整数.数字.电子邮件地址(Email).手机号码.身份证号.URL地址. IP ...
- 老男孩Python高级全栈开发工程师【真正的全套完整无加密】
点击了解更多Python课程>>> 老男孩Python高级全栈开发工程师[真正的全套完整无加密] 课程大纲 老男孩python全栈,Python 全栈,Python教程,Django ...
- redux form
纯粹使用react进行表单校验: class MyForm extends React.Component{ constructor(props){ super(props) this.onAddrC ...
- Cookies和Session的区别和理解
Cookies和Session的区别和理解 cookie机制 Cookies是服务器在本地机器上存储的小段文本并随每一个请求发送至同一个服务器.IETF RFC 2965 HTTP State Man ...
- 【转】ERROR 1819 (HY000): Your password does not satisfy the current policy requirements
为了加强安全性,MySQL5.7为root用户随机生成了一个密码,在error log中,关于error log的位置,如果安装的是RPM包,则默认是/var/log/mysqld.log. 一般可通 ...