Description

Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)

Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.

Input

Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.

Output

For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".

Sample Input

3 2
10 3
341 2
341 3
1105 2
1105 3
0 0

Sample Output

no
no
yes
no
yes
yes 如果p是素数,输出no;如果p不是素数,判断a^p对p取余是否等于a。
 #include<cstdio>
#include<math.h>
__int64 f(__int64 a,__int64 b)
{
__int64 c=b,t=;
while(b)
{
if(b % != )
{
t=t*a%c;
}
a=a*a%c;
b/=;
}
return t%c;
}
__int64 f2(__int64 a)
{
__int64 i;
if(a <= || a % == ) return ;
for(i=;i<=sqrt(a);i++)
{
if(a % i == ) return ;
}
return ;
}
int main()
{ __int64 p,a;
while(scanf("%I64d %I64d",&p,&a) && p && a)
{
if(f2(p) == ) printf("no\n");
else
{
if(f(a,p) == a) printf("yes\n");
else
printf("no\n");
} }
}
 

POJ3641 (快速幂) 判断a^p = a (mod p)是否成立的更多相关文章

  1. 算法竞赛进阶指南--快速幂,求a^b mod p

    // 快速幂,求a^b mod p int power(int a, int b, int p) { int ans = 1; for (; b; b >>= 1) { if (b &am ...

  2. 快速幂(51Nod1046 A^B Mod C)

    快速幂也是比较常用的,原理在下面用代码解释,我们先看题. 51Nod1046 A^B Mod C 给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. In ...

  3. (分治法 快速幂)51nod1046 A^B Mod C

    1046 A^B Mod C   给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. 收起   输入 3个正整数A B C,中间用空格分隔.(1 < ...

  4. POJ3641(快速幂)

    Pseudoprime numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8529   Accepted: 35 ...

  5. XTU 1260 - Determinant - [2017湘潭邀请赛A题(江苏省赛)][高斯消元法][快速幂和逆元]

    是2017江苏省赛的第一题,当时在场上没做出来(废话,那个时候又不懂高斯消元怎么写……而且数论也学得一塌糊涂,现在回来补了) 省赛结束之后,题解pdf就出来了,一看题解,嗯……加一行再求逆矩阵从而得到 ...

  6. URAL 1141. RSA Attack(欧拉定理+扩展欧几里得+快速幂模)

    题目链接 题意 : 给你n,e,c,并且知道me ≡ c (mod n),而且n = p*q,pq都为素数. 思路 : 这道题的确与题目名字很相符,是个RSA算法,目前地球上最重要的加密算法.RSA算 ...

  7. [CSP-S模拟测试]:随(快速幂+数学)

    题目描述 给出$n$个正整数$a_1,a_2...a_n$和一个质数mod.一个变量$x$初始为$1$.进行$m$次操作.每次在$n$个数中随机选一个$a_i$,然后$x=x\times a_i$.问 ...

  8. uva 10710 快速幂取模

    //题目大意:输入一个n值问洗牌n-1次后是不是会变成初始状态(Jimmy-number),从案例可看出牌1的位置变化为2^i%n,所以最终判断2^(n-1)=1(mod n)是否成立#include ...

  9. POJ3641 Pseudoprime numbers(快速幂+素数判断)

    POJ3641 Pseudoprime numbers p是Pseudoprime numbers的条件: p是合数,(p^a)%p=a;所以首先要进行素数判断,再快速幂. 此题是大白P122 Car ...

随机推荐

  1. Golang bash alias 自动配置GOPATH并运行项目

     BASH代码: source ~/.bash_profile; export GOPATH=$GOPATH:`cd ..; pwd`; echo -e "* GOPATH: $GOPATH ...

  2. linux 重名名、删除文件操作

    linux下重命名文件或文件夹的命令mv既可以重命名,又可以移动文件或文件夹. 例子:将目录A重命名为B mv A B 例子:将/a目录移动到/b下,并重命名为c mv /a /b/c 删除文件夹 r ...

  3. [ZPG TEST 115] 字符串【归类思想】

    pdf效果太差,转成word效果依旧差,只好转成jpg传了. 这一题用到了“归类”的思想,令s(i, a)表示前i个字体,字符a出现的次数.那么ans一定等于一个 (  s(i, a) - s(j, ...

  4. NDK(18)eclipse 使用C++ STL

    1.引用库 在Application.mk 中使用 APP_STL := stlport_static 等. APP_ABI := x86 armeabi APP_PLATFORM := androi ...

  5. Cenos7 切换单用户模式

    CentOS 7在进入单用户的时候和6.x做了很多改变,下面让我们来看看如何进入单用户. 1.重启服务器,在选择内核界面使用上下箭头移动 2.选择内核并按“e” 3.修改参数 将rhgb quiet ...

  6. 配置Oracle监听器

    Oracle的监听和网络服务都可以在Net Manager中配置,如下图.也可以在上面的那个Net Configuration Assistant中配置,只是Net Manager比较方便些. Ora ...

  7. hihocoder编程练习赛52-3 部门聚会

    思路: 树形dp. 实现: #include <bits/stdc++.h> using namespace std; ; int n, a[MAXN], in[MAXN]; vector ...

  8. Android IJKPlayer缓冲区设置以及播放一段时间出错解决方案

    IJKPlayer拖动播放进度会导致重新请求数据,未使用已经缓冲好的数据,所以应该尽量控制缓冲区大小,减少不必要的数据损失. mMediaPlayer.setOption(IjkMediaPlayer ...

  9. Java编程思想总结笔记Chapter 5

    初始化和清理是涉及安全的两个问题.本章简单的介绍“垃圾回收器”及初始化知识. 第五章  初始化与清理 目录:5.1 用构造器确保初始化5.2 方法重载5.3 默认构造器5.4 this关键字5.5 清 ...

  10. 在action中将字符串、对象、list集合保存到值栈中,在jsp页面中获取的方法

    转自:csdn 封装对象User,属性有id,username,email等1.1:在action中将字符串保存到值栈中   1.1.1 获取值栈对象         ValueStack stack ...