POJ3641 (快速幂) 判断a^p = a (mod p)是否成立
Description
Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Input
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
Output
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
Sample Input
3 2
10 3
341 2
341 3
1105 2
1105 3
0 0
Sample Output
no
no
yes
no
yes
yes 如果p是素数,输出no;如果p不是素数,判断a^p对p取余是否等于a。
#include<cstdio>
#include<math.h>
__int64 f(__int64 a,__int64 b)
{
__int64 c=b,t=;
while(b)
{
if(b % != )
{
t=t*a%c;
}
a=a*a%c;
b/=;
}
return t%c;
}
__int64 f2(__int64 a)
{
__int64 i;
if(a <= || a % == ) return ;
for(i=;i<=sqrt(a);i++)
{
if(a % i == ) return ;
}
return ;
}
int main()
{ __int64 p,a;
while(scanf("%I64d %I64d",&p,&a) && p && a)
{
if(f2(p) == ) printf("no\n");
else
{
if(f(a,p) == a) printf("yes\n");
else
printf("no\n");
} }
}
POJ3641 (快速幂) 判断a^p = a (mod p)是否成立的更多相关文章
- 算法竞赛进阶指南--快速幂,求a^b mod p
// 快速幂,求a^b mod p int power(int a, int b, int p) { int ans = 1; for (; b; b >>= 1) { if (b &am ...
- 快速幂(51Nod1046 A^B Mod C)
快速幂也是比较常用的,原理在下面用代码解释,我们先看题. 51Nod1046 A^B Mod C 给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. In ...
- (分治法 快速幂)51nod1046 A^B Mod C
1046 A^B Mod C 给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. 收起 输入 3个正整数A B C,中间用空格分隔.(1 < ...
- POJ3641(快速幂)
Pseudoprime numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8529 Accepted: 35 ...
- XTU 1260 - Determinant - [2017湘潭邀请赛A题(江苏省赛)][高斯消元法][快速幂和逆元]
是2017江苏省赛的第一题,当时在场上没做出来(废话,那个时候又不懂高斯消元怎么写……而且数论也学得一塌糊涂,现在回来补了) 省赛结束之后,题解pdf就出来了,一看题解,嗯……加一行再求逆矩阵从而得到 ...
- URAL 1141. RSA Attack(欧拉定理+扩展欧几里得+快速幂模)
题目链接 题意 : 给你n,e,c,并且知道me ≡ c (mod n),而且n = p*q,pq都为素数. 思路 : 这道题的确与题目名字很相符,是个RSA算法,目前地球上最重要的加密算法.RSA算 ...
- [CSP-S模拟测试]:随(快速幂+数学)
题目描述 给出$n$个正整数$a_1,a_2...a_n$和一个质数mod.一个变量$x$初始为$1$.进行$m$次操作.每次在$n$个数中随机选一个$a_i$,然后$x=x\times a_i$.问 ...
- uva 10710 快速幂取模
//题目大意:输入一个n值问洗牌n-1次后是不是会变成初始状态(Jimmy-number),从案例可看出牌1的位置变化为2^i%n,所以最终判断2^(n-1)=1(mod n)是否成立#include ...
- POJ3641 Pseudoprime numbers(快速幂+素数判断)
POJ3641 Pseudoprime numbers p是Pseudoprime numbers的条件: p是合数,(p^a)%p=a;所以首先要进行素数判断,再快速幂. 此题是大白P122 Car ...
随机推荐
- css覆盖select样式并添加小箭头
.select { border-radius: 5px; border: 1px #F4A627 solid; -webkit-appearance: none;//清除默认样式 backgroun ...
- Tree CodeForces -932D
错误记录:如下注释语句 #include<cstdio> #include<algorithm> using namespace std; typedef long long ...
- iOS 集成银联支付(绕过文档的坑,快速集成)-转
本文是投稿文章,作者:南栀倾寒当初集成支付宝的时候,觉得见了这么丑的代码,加上这么难找的下载地址,在配上几乎为零的文档,寒哥就要吐血了. 下午去集成银联,才知道血吐的早了. 下载地址:https:// ...
- 018 [工具软件]截图贴图注释 Snipaste
Snipaste 是一个截图贴图工具,绿色免费.官方主页:https://zh.snipaste.com/. 三大功能: 1.截图,可以自动识别窗口的各元素,可以精准到像素调整截图区域大小. 2.贴图 ...
- joda日期格式转换
public static String parseDateTime(String date,String formatFrom,String formatTo){ DateTimeFormatter ...
- oracle 安装,启动 ,plsql 连接
1.下载oracle 服务器端,正常安装,在选择桌面类或者是服务器类的时候选择服务器类. 2.下载oracle 客户端解压版 下载地址 链接:https://pan.baidu.com/s/1mi ...
- install nginx error
the error info : the HTTP gzip module requires the zlib library.You can either disable the module by ...
- R in action读书笔记(2)-第五章:高级数据管理(下)
5.4 控制流 语句(statement)是一条单独的R语句或一组复合语句(包含在花括号{ } 中的一组R语 句,使用分号分隔): 条件(cond)是一条最终被解析为真(TRUE)或假(FAL ...
- 在Eclipse中用Maven打包jar包--完整版
将本地的jar导入到maven本地库中 <!--手动加入库中 --><!-- mvn install:install-file -DgroupId=org.apache.Hadoop ...
- eigenface资料整合
把图片映射到能最好区分的空间(pca),在这个空间同类是聚集的,而不同类之间间隔大.这相当于一个模型,把验证集也映射到此空间,然后利用knn对验证集分类. pca:https://wenku.baid ...