Description

Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)

Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.

Input

Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.

Output

For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".

Sample Input

3 2
10 3
341 2
341 3
1105 2
1105 3
0 0

Sample Output

no
no
yes
no
yes
yes 如果p是素数,输出no;如果p不是素数,判断a^p对p取余是否等于a。
 #include<cstdio>
#include<math.h>
__int64 f(__int64 a,__int64 b)
{
__int64 c=b,t=;
while(b)
{
if(b % != )
{
t=t*a%c;
}
a=a*a%c;
b/=;
}
return t%c;
}
__int64 f2(__int64 a)
{
__int64 i;
if(a <= || a % == ) return ;
for(i=;i<=sqrt(a);i++)
{
if(a % i == ) return ;
}
return ;
}
int main()
{ __int64 p,a;
while(scanf("%I64d %I64d",&p,&a) && p && a)
{
if(f2(p) == ) printf("no\n");
else
{
if(f(a,p) == a) printf("yes\n");
else
printf("no\n");
} }
}
 

POJ3641 (快速幂) 判断a^p = a (mod p)是否成立的更多相关文章

  1. 算法竞赛进阶指南--快速幂,求a^b mod p

    // 快速幂,求a^b mod p int power(int a, int b, int p) { int ans = 1; for (; b; b >>= 1) { if (b &am ...

  2. 快速幂(51Nod1046 A^B Mod C)

    快速幂也是比较常用的,原理在下面用代码解释,我们先看题. 51Nod1046 A^B Mod C 给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. In ...

  3. (分治法 快速幂)51nod1046 A^B Mod C

    1046 A^B Mod C   给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. 收起   输入 3个正整数A B C,中间用空格分隔.(1 < ...

  4. POJ3641(快速幂)

    Pseudoprime numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8529   Accepted: 35 ...

  5. XTU 1260 - Determinant - [2017湘潭邀请赛A题(江苏省赛)][高斯消元法][快速幂和逆元]

    是2017江苏省赛的第一题,当时在场上没做出来(废话,那个时候又不懂高斯消元怎么写……而且数论也学得一塌糊涂,现在回来补了) 省赛结束之后,题解pdf就出来了,一看题解,嗯……加一行再求逆矩阵从而得到 ...

  6. URAL 1141. RSA Attack(欧拉定理+扩展欧几里得+快速幂模)

    题目链接 题意 : 给你n,e,c,并且知道me ≡ c (mod n),而且n = p*q,pq都为素数. 思路 : 这道题的确与题目名字很相符,是个RSA算法,目前地球上最重要的加密算法.RSA算 ...

  7. [CSP-S模拟测试]:随(快速幂+数学)

    题目描述 给出$n$个正整数$a_1,a_2...a_n$和一个质数mod.一个变量$x$初始为$1$.进行$m$次操作.每次在$n$个数中随机选一个$a_i$,然后$x=x\times a_i$.问 ...

  8. uva 10710 快速幂取模

    //题目大意:输入一个n值问洗牌n-1次后是不是会变成初始状态(Jimmy-number),从案例可看出牌1的位置变化为2^i%n,所以最终判断2^(n-1)=1(mod n)是否成立#include ...

  9. POJ3641 Pseudoprime numbers(快速幂+素数判断)

    POJ3641 Pseudoprime numbers p是Pseudoprime numbers的条件: p是合数,(p^a)%p=a;所以首先要进行素数判断,再快速幂. 此题是大白P122 Car ...

随机推荐

  1. SwipeLayou与ScrollerView滑动冲突

    在SwipeLayout内嵌套ScorllerView滑动会出现上滑滑动冲突,ScollerView不能往上滑,,,,,, mSlv.getViewTreeObserver().addOnScroll ...

  2. Qt事件系统之二:鼠标事件和滚轮事件

    在Qt中,事件作为一个对象,继承自 QEvent 类,常见的有键盘事件 QKeyEvent.鼠标事件 QMouseEvent 和定时器事件 QTimerEvent 等,与 QEvent 类的继承关系图 ...

  3. .net 字符串和JSON格式的互换

    近期又做了个问卷调查,问卷调查一次性要保存一二十个题目和答案!所以嘞,博主为了偷懒,就直接把答卷内容保存成了Json格式! 好处当然是很多啦! 只需一个字段就能保存整个答卷的内容! 想想都刺激!哈哈~ ...

  4. 关于.Net中Process的使用方法和各种用途汇总(二):用Process启动cmd.exe完成将cs编译成dll

    上一章博客我为大家介绍了Process类的所有基本使用方法,这一章博客我来为大家做一个小扩展,来熟悉一下Process类的实际使用,废话不多说我们开始演示. 先看看我们的软件要设计成的布局吧. 首先我 ...

  5. WPF学习08:MVVM 预备知识之COMMAND

    WPF内建的COMMAND是GOF 提出的23种设计模式中,命令模式的实现. 本文是WPF学习07:MVVM 预备知识之数据绑定的后续,将说明实现COMMAND的三个重点:ICommand  Comm ...

  6. 重写java.lang.String IndexOf()方法,实现对字符串以ASCII规则截取

    /** * 根据元数据和目标ascii位数截取字符串,失败返回-1 * @param sourceStr 元数据字符串 * @param endIndex 截取到第几位 * @return 结果字符串 ...

  7. java.lang.ClassCastException: com.google.gson.internal.LinkedTreeMap cannot be cast to

    在做android解析服务器传来的json时遇到的错误. 服务器传来的数据格式 [{"," id":"7ef6815938394fce88a5873312b66 ...

  8. 忘记dba用户密码,利用SQLPlus重置dba密码

    打开SQL Plus 输入用户名: sys as sysdba 输入口令:可直接回车 连接到: Oracle Database 11g Enterprise Edition Release 11.2. ...

  9. .less css 使用 LESS 简化层叠样式表(CSS)的编写(另外一种css框架 sass)

    使用 LESS 简化层叠样式表(CSS)的编写 https://less.bootcss.com/ Sass完全兼容所有版本的CSS https://gojs.net/latest/samples/f ...

  10. CAD参数绘制椭圆弧(com接口)

    在CAD设计时,需要绘制椭圆弧,用户可以设置椭圆弧基本属性. 主要用到函数说明: _DMxDrawX::DrawEllipseArc 绘制椭圆弧.详细说明如下: 参数 说明 DOUBLE dCente ...