NOI模拟赛(3.8)Problem B
Description
Input
接下来输入一个n*m字符矩阵,n行m列,’.’表示空的格子,‘#’表示有障碍的格子。
Output
接下来ans行,每行一个坐标(x,y)表示第x行第y列是一个Alice有必胜策略的初始位置,以矩阵的左上角为(1,1),右下角为(n,m)。输出位置时按照x从小到大,当x相同时y从小到大的顺序输出。
Sample Input
2 2
#.
..
Sample Output
2
1 2
2 1
Data Constraint
60%的数据: 1<=n,m<=10
100%的数据:1<=n,m<=100
Hint
如果Alice将棋子放在(2,1)号点,类似以上情况
如果Alice将棋子放在(2,2),Bob可以将棋子任意移动到(1,2)或(2,1),此时Bob获胜
Solution
由于是博弈论,可以转化成求二分图的关键点,即必然在二分图匹配中出现的点
算法要考虑染色,即当前点染黑,周围点染白,染色后把连通块都用算法匹配掉
若Alice走不在最大匹配点集内的点,则该点的周围连的一定都是匹配点,可知Bob一定走一条非匹配边到一个匹配点
由于只要先选了最大匹配点就必胜,因此在这个条件下Alice必胜
最后统计一下答案就好了
#include <stdio.h>
#include <string.h> template<class T> inline void read(T &x)
{
int c=getchar();bool b=0;
for(x=0;c<48||c>57;c=getchar())if(c==45)b=1;
for(;c>47&&c<58;c=getchar())x=(x<<1)+(x<<3)+c-48;
if(b)x=-x;
} const int N=200;
bool win[N*N];
int color[N*N],n,m,lab,num[N][N],vind,vis[N*N],lnk[N*N],Ans,fir[N*N],et=-1;
char mat[N][N]; struct Position
{
int x,y;
}pos[N*N]; struct Pointer
{
int v,next;
}e[N*N*5]; inline void link(int x,int y)
{
e[++et]=(Pointer){y,fir[x]},fir[x]=et;
e[++et]=(Pointer){x,fir[y]},fir[y]=et;
} bool dfs(int at)
{
for(int j=fir[at];~j;j=e[j].next)
if(vis[e[j].v]!=vind)
{
vis[e[j].v]=vind;
if((!lnk[e[j].v]) || dfs(lnk[e[j].v]))
{
lnk[e[j].v]=at;
return 1;
}
}
return 0;
} void find(int at)
{
for(int j=fir[at];~j;j=e[j].next)
if(lnk[e[j].v] && (!win[lnk[e[j].v]]))
{
win[lnk[e[j].v]]=1;
find(lnk[e[j].v]);
}
} int main()
{
memset(fir,-1,sizeof fir);
read(n),read(m);
for(int i=1;i<=n;i++)
scanf("%s",mat[i]+1);
lab=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(mat[i][j]=='.')
{
num[i][j]=++lab;
pos[lab].x=i;
pos[lab].y=j;
color[lab]=((i+j)&1);
if(i>1 && mat[i-1][j]=='.')
link(lab,num[i-1][j]);
if(j>1 && mat[i][j-1]=='.')
link(lab,num[i][j-1]);
}
for(int i=1;i<=lab;i++)
if(!color[i])
{
++vind;
dfs(i);
}
for(int i=1;i<=lab;i++)
if(color[i]&&lnk[i])
lnk[lnk[i]]=i;
for(int i=1;i<=lab;i++)
if(!lnk[i])
{
win[i]=1;
find(i);
}
Ans=0;
for(int i=1;i<=lab;i++)
Ans+=win[i];
printf("%d\n",Ans);
for(int i=1;i<=lab;i++)
if(win[i])
printf("%d %d\n",pos[i].x,pos[i].y);
return 0;
}
NOI模拟赛(3.8)Problem B的更多相关文章
- NOI模拟赛 Day1
[考完试不想说话系列] 他们都会做呢QAQ 我毛线也不会呢QAQ 悲伤ING 考试问题: 1.感觉不是很清醒,有点困╯﹏╰ 2.为啥总不按照计划来!!! 3.脑洞在哪里 4.把模拟赛当作真正的比赛,紧 ...
- 6.28 NOI模拟赛 好题 状压dp 随机化
算是一道比较新颖的题目 尽管好像是两年前的省选模拟赛题目.. 对于20%的分数 可以进行爆搜,对于另外20%的数据 因为k很小所以考虑上状压dp. 观察最后答案是一个连通块 从而可以发现这个连通块必然 ...
- NOI 模拟赛 #2
得分非常惨惨,半个小时写的纯暴力 70 分竟然拿了 rank 1... 如果 OYJason 和 wxjor 在可能会被爆踩吧 嘤 T1 欧拉子图 给一个无向图,如果一个边集的导出子图是一个欧拉回路, ...
- 【2018.12.10】NOI模拟赛3
题目 WZJ题解 大概就是全场就我写不过 $FFT$ 系列吧……自闭 T1 奶一口,下次再写不出这种 $NTT$ 裸题题目我就艹了自己 -_-||| 而且这跟我口胡的自创模拟题 $set1$ 的 $T ...
- NOI模拟赛Day5
T1 有and,xor,or三种操作,每个人手中一个数,求和左边进行某一种运算的最大值,当t==2时,还需要求最大值的个数. test1 20% n<=1000 O(n^2)暴力 test2 2 ...
- NOI模拟赛Day4
看到成绩的时候我的内心** woc第一题写错了呵呵呵呵呵呵呵呵 人不能太浪,会遭报应的** ------------------------------------------------------ ...
- NOI模拟赛Day3
终于A题啦鼓掌~开心~ 开考看完题后,觉得第二题很好捏(傻叉上线 搞到十一点准备弃疗了然后突然发现我会做第一题 于是瞎码了码,就去准备饭票了... 好了,停止扯淡(就我一个我妹子每天不说话好难受QAQ ...
- NOI模拟赛Day2
深深的感受到了自己的水 ---------------------------------------------------------------------------------------- ...
- 【NOI模拟赛(湖南)】DeepDarkFantasy
DeepDarkFantasy 从东京出发,不久便到一处驿站,写道:日暮里. ——鲁迅<藤野先生> 定义一个置换的平方为对1~n的序列做两次该置换得到的序列.已知一个置换的平方,并且这个 ...
随机推荐
- jQuery笔记之Easing Plugin
jQuery easing 使用方法首先,项目中如果需要使用特殊的动画效果,则需要在引入jQuery之后引入jquery.easing.1.3.js<script type="text ...
- New Article For Test
\[ a ^ 2 + b ^ 2 ~-~ 2 \times a \times b \times cos~ \theta = c ^ 2 \] #include<stdio.h> int m ...
- 暑期训练狂刷系列——Lightoj 1084 - Winter bfs
题目连接: http://www.lightoj.com/volume_showproblem.php?problem=1084 题目大意: 有n个点在一条以零为起点的坐标轴上,每个点最多可以移动k, ...
- 51nod 1116 K进制下的大数
你万万想不到,Long Long 就能存下的数据 #include <iostream> #include <cstdio> #include <cstdlib> ...
- DFS(深度) hihoCoder挑战赛14 B 赛车
题目传送门 题意:中文题面 分析:放官方题解,就是从1为根节点深搜记录节点的深度,选出最大的深度的点,将该到达该点的节点都vis掉,然后再重新计算没有vis的点的深度,找最大的相加就是答案.放张图好理 ...
- C#中实现C++中的友元类
最近做一个小程序,一个类A(负责显示处理)需要大量调用类B(负责数据处理)的函数,我最先想到的C++中的友元概念,因为类B中的这些函数并不希望public,它只是允许类A调用监测. 网上搜索了一下,没 ...
- 【LeetCode】树的遍历
非递归中序遍历: 思路:注释 vector<int> inorderTraversal(TreeNode* root) { vector<int>ret; if(root == ...
- Mac OS 下安装和配置 maven
1. 安装 Maven 前的必须准备 需先安装 Java 环境 下载合适的 JDK 配置 JDK 环境变量 JAVA_HOME:为 JDK 安装目录 Path:为 JDK/bin 目录 测试是否成功: ...
- Elasticsearch--集群管理_别名&插件&更新API
目录 使用索引别名 别名 创建别名 修改别名 合并命令 获取所有别名 移除别名 别名中过滤 别名和路由 Elasticsearch插件 基础知识 安装插件 移除插件 更新设置API 使用索引别名 通过 ...
- Javascript数据结构之栈
作者原文:http://hawkzz.com/blog/blog/1515054561771 定义 栈是一种特殊的列表,栈内的元素只能通过列表的一端访问,这一端称为栈顶.栈被称为一种先入后出的数据结构 ...