NOI模拟赛(3.8)Problem B
Description
Input
接下来输入一个n*m字符矩阵,n行m列,’.’表示空的格子,‘#’表示有障碍的格子。
Output
接下来ans行,每行一个坐标(x,y)表示第x行第y列是一个Alice有必胜策略的初始位置,以矩阵的左上角为(1,1),右下角为(n,m)。输出位置时按照x从小到大,当x相同时y从小到大的顺序输出。
Sample Input
2 2
#.
..
Sample Output
2
1 2
2 1
Data Constraint
60%的数据: 1<=n,m<=10
100%的数据:1<=n,m<=100
Hint
如果Alice将棋子放在(2,1)号点,类似以上情况
如果Alice将棋子放在(2,2),Bob可以将棋子任意移动到(1,2)或(2,1),此时Bob获胜
Solution
由于是博弈论,可以转化成求二分图的关键点,即必然在二分图匹配中出现的点
算法要考虑染色,即当前点染黑,周围点染白,染色后把连通块都用算法匹配掉
若Alice走不在最大匹配点集内的点,则该点的周围连的一定都是匹配点,可知Bob一定走一条非匹配边到一个匹配点
由于只要先选了最大匹配点就必胜,因此在这个条件下Alice必胜
最后统计一下答案就好了
#include <stdio.h>
#include <string.h> template<class T> inline void read(T &x)
{
int c=getchar();bool b=0;
for(x=0;c<48||c>57;c=getchar())if(c==45)b=1;
for(;c>47&&c<58;c=getchar())x=(x<<1)+(x<<3)+c-48;
if(b)x=-x;
} const int N=200;
bool win[N*N];
int color[N*N],n,m,lab,num[N][N],vind,vis[N*N],lnk[N*N],Ans,fir[N*N],et=-1;
char mat[N][N]; struct Position
{
int x,y;
}pos[N*N]; struct Pointer
{
int v,next;
}e[N*N*5]; inline void link(int x,int y)
{
e[++et]=(Pointer){y,fir[x]},fir[x]=et;
e[++et]=(Pointer){x,fir[y]},fir[y]=et;
} bool dfs(int at)
{
for(int j=fir[at];~j;j=e[j].next)
if(vis[e[j].v]!=vind)
{
vis[e[j].v]=vind;
if((!lnk[e[j].v]) || dfs(lnk[e[j].v]))
{
lnk[e[j].v]=at;
return 1;
}
}
return 0;
} void find(int at)
{
for(int j=fir[at];~j;j=e[j].next)
if(lnk[e[j].v] && (!win[lnk[e[j].v]]))
{
win[lnk[e[j].v]]=1;
find(lnk[e[j].v]);
}
} int main()
{
memset(fir,-1,sizeof fir);
read(n),read(m);
for(int i=1;i<=n;i++)
scanf("%s",mat[i]+1);
lab=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(mat[i][j]=='.')
{
num[i][j]=++lab;
pos[lab].x=i;
pos[lab].y=j;
color[lab]=((i+j)&1);
if(i>1 && mat[i-1][j]=='.')
link(lab,num[i-1][j]);
if(j>1 && mat[i][j-1]=='.')
link(lab,num[i][j-1]);
}
for(int i=1;i<=lab;i++)
if(!color[i])
{
++vind;
dfs(i);
}
for(int i=1;i<=lab;i++)
if(color[i]&&lnk[i])
lnk[lnk[i]]=i;
for(int i=1;i<=lab;i++)
if(!lnk[i])
{
win[i]=1;
find(i);
}
Ans=0;
for(int i=1;i<=lab;i++)
Ans+=win[i];
printf("%d\n",Ans);
for(int i=1;i<=lab;i++)
if(win[i])
printf("%d %d\n",pos[i].x,pos[i].y);
return 0;
}
NOI模拟赛(3.8)Problem B的更多相关文章
- NOI模拟赛 Day1
[考完试不想说话系列] 他们都会做呢QAQ 我毛线也不会呢QAQ 悲伤ING 考试问题: 1.感觉不是很清醒,有点困╯﹏╰ 2.为啥总不按照计划来!!! 3.脑洞在哪里 4.把模拟赛当作真正的比赛,紧 ...
- 6.28 NOI模拟赛 好题 状压dp 随机化
算是一道比较新颖的题目 尽管好像是两年前的省选模拟赛题目.. 对于20%的分数 可以进行爆搜,对于另外20%的数据 因为k很小所以考虑上状压dp. 观察最后答案是一个连通块 从而可以发现这个连通块必然 ...
- NOI 模拟赛 #2
得分非常惨惨,半个小时写的纯暴力 70 分竟然拿了 rank 1... 如果 OYJason 和 wxjor 在可能会被爆踩吧 嘤 T1 欧拉子图 给一个无向图,如果一个边集的导出子图是一个欧拉回路, ...
- 【2018.12.10】NOI模拟赛3
题目 WZJ题解 大概就是全场就我写不过 $FFT$ 系列吧……自闭 T1 奶一口,下次再写不出这种 $NTT$ 裸题题目我就艹了自己 -_-||| 而且这跟我口胡的自创模拟题 $set1$ 的 $T ...
- NOI模拟赛Day5
T1 有and,xor,or三种操作,每个人手中一个数,求和左边进行某一种运算的最大值,当t==2时,还需要求最大值的个数. test1 20% n<=1000 O(n^2)暴力 test2 2 ...
- NOI模拟赛Day4
看到成绩的时候我的内心** woc第一题写错了呵呵呵呵呵呵呵呵 人不能太浪,会遭报应的** ------------------------------------------------------ ...
- NOI模拟赛Day3
终于A题啦鼓掌~开心~ 开考看完题后,觉得第二题很好捏(傻叉上线 搞到十一点准备弃疗了然后突然发现我会做第一题 于是瞎码了码,就去准备饭票了... 好了,停止扯淡(就我一个我妹子每天不说话好难受QAQ ...
- NOI模拟赛Day2
深深的感受到了自己的水 ---------------------------------------------------------------------------------------- ...
- 【NOI模拟赛(湖南)】DeepDarkFantasy
DeepDarkFantasy 从东京出发,不久便到一处驿站,写道:日暮里. ——鲁迅<藤野先生> 定义一个置换的平方为对1~n的序列做两次该置换得到的序列.已知一个置换的平方,并且这个 ...
随机推荐
- 《windows核心编程系列 》六谈谈线程调度、优先级和关联性
线程调度.优先级和关联性 每个线程都有一个CONTEXT结构,保存在线程内核对象中.大约每隔20ms windows就会查看所有当前存在的线程内核对象.并在可调度的线程内核对象中选择一个,将其保存在C ...
- Boost1.6x+win7+VC2015编译
下载 通过boost官方网站, 或直接在source forge下载boost_1_6x_0. 可选包 Zlib library, 环境变量: ZLIB_SOURCE bzip2, 环境变量: BZI ...
- [CF1076G] Array Game
Description Transmission Gate Solution 考虑Dp,设Dp[i] 表示当我们从前面跳跃到i时,他是必胜还是必败. 那么\(Dp[i] = Min(Dp[j], !( ...
- [POI2007]洪水pow
Description AKD市处在一个四面环山的谷地里.最近一场大暴雨引发了洪水,AKD市全被水淹没了.Blue Mary,AKD市的市长,召集了他的所有顾问(包括你)参加一个紧急会议.经过细致的商 ...
- 题解报告:hdu 1789 Doing Homework again(贪心)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1789 Problem Description Ignatius has just come back ...
- DEV—【GridControl添加按钮列】
效果图 打开GridControl的Run Designer在左侧栏中找到: 添加一个ButtonEdit: 更改属性中的值:Caption为按钮上显示的Text:Kind为按钮的类型: 然后拖到最后 ...
- [转]WF事件驱动
本文转自:http://www.cnblogs.com/Mayvar/archive/2011/09/03/wanghonghua_201109030446.html 已经有不少朋友知道Workflo ...
- C#特性的介绍及应用场景
1.特性的任务:特性就是为了支持对象添加一些自我描述的信息,不影响类封装的前提添加额外信息.如果你用这个信息,那特性就有用:如果你不需要这个信息,那么这个特性就没用. 2.特性的基类:Attribut ...
- (五)Mybatis总结之一对多、一对一
一对多 业务场景:张三既是java开发师又是大学老师又是LOL代练,张三拥有多个角色. 1.创建实体类UserInfo和RoleInfo package com.qf.mybatisdemo.pojo ...
- HttpServletRequest对象,自己学习的心得。
1. HttpServletRequest介绍 HttpServletRequest对象代表客户端的请求,当客户端通过Http超文本传输协议访问服务器时,Http请求头中的所有信息都封装在这个对象中, ...