题目描述 Description

设r是个2k进制数,并满足以下条件:

(1)r至少是个2位的2k进制数。

(2)作为2k进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位。

(3)将r转换为2进制数q后,则q的总位数不超过w。

在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的。

问:满足上述条件的不同的r共有多少个?

我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q。将S从右起划分为若干个长度为k 的段,每段对应一位2k进制的数,如果S至少可分成2段,则S所对应的二进制数又可以转换为上述的2k进制数r。

例:设k=3,w=7。则r是个八进制数(23=8)。由于w=7,长度为7的01字符串按3位一段分,可分为3段(即1,3,3,左边第一段只有一个二进制位),则满足条件的八进制数有:

2位数:高位为1:6个(即12,13,14,15,16,17),高位为2:5个,…,高位为6:1个(即67)。共6+5+…+1=21个。

3位数:高位只能是1,第2位为2:5个(即123,124,125,126,127),第2位为3:4个,…,第2位为6:1个(即167)。共5+4+…+1=15个。

所以,满足要求的r共有36个。

输入描述 Input Description

只有1行,为两个正整数,用一个空格隔开:

k W

输出描述 Output Description

共1行,是一个正整数,为所求的计算结果,即满足条件的不同的r的个数(用十进制数表示),要求最高位不得为0,各数字之间不得插入数字以外的其他字符(例如空格、换行符、逗号等)。

(提示:作为结果的正整数可能很大,但不会超过200位)

样例输入 Sample Input

3 7

样例输出 Sample Output

36

/*
杨辉三角
强力爆空间,只能用char类型了
*/
#include<cstdio>
#include<iostream>
#include<cstring>
#define M 600
using namespace std;
int k,w;
struct node
{
char ch[];int len;
node()
{
memset(ch,,sizeof(ch));
}
};node ans,c[M][M];
node jia(node x,node y)
{
node de;
de.len=max(x.len,y.len);
for(int i=;i<=de.len;i++)
{
de.ch[i]+=x.ch[i]+y.ch[i];
de.ch[i+]+=de.ch[i]/;
de.ch[i]%=;
}
if(de.ch[de.len+]!=)de.len++;
return de;
}
int poww(int a,int b)
{
int base=a,r=;
while(b)
{
if(b&)r*=base;
base*=base;
b/=;
}
return r;
}
void init()
{
int t=poww(,k);
for(int i=;i<=t;i++)
for(int j=;j<=i;j++)
if(j==i||j==)
{
c[i][j].ch[]=;
c[i][j].len=;
}
else c[i][j]=jia(c[i-][j],c[i-][j-]);
}
int main()
{
scanf("%d%d",&k,&w);
init();
int n=w/k,yu=;
if(n<){printf("");return ;}
if(w%k!=)
{
int temp=w-k*n;n++;
for(int i=;i<temp;i++)
yu+=poww(,i);
}
for(int i=;i<=n;i++)
if(i!=n) ans=jia(ans,c[poww(,k)-][i]);
else if(!yu) ans=jia(ans,c[poww(,k)-][n]);
else if(yu)
{
for(int j=;j<=yu;j++)
ans=jia(ans,c[poww(,k)--j][n-]);
}
for(int i=ans.len;i>=;i--)
printf("%d",ans.ch[i]);
return ;
}

2k进制数(codevs 1157)的更多相关文章

  1. 【b604】2K进制数

    Time Limit: 1 second Memory Limit: 50 MB [问题描述] 设r是个2K进制数,并满足以下条件: (1)r至少是个2位的2K进制数. (2)作为2K进制数,除最后一 ...

  2. NOIP2006 2k进制数

    2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换 ...

  3. [codevs1157]2^k进制数

    [codevs1157]2k进制数 试题描述 设r是个2k 进制数,并满足以下条件: (1)r至少是个2位的2k 进制数. (2)作为2k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ...

  4. noip2006 2^k进制数

    设r是个2k进制数,并满足以下条件: (1)r至少是个2位的2k进制数. (2)作为2k进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w ...

  5. 一本通1649【例 2】2^k 进制数

    1649:[例 2]2^k 进制数 时间限制: 1000 ms         内存限制: 524288 KB [题目描述] 原题来自:NOIP 2006 提高组 设 r 是个 2k 进制数,并满足以 ...

  6. 蓝桥杯 问题 1110: 2^k进制数 (排列组合+高精度巧妙处理)

    题目链接 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2 ...

  7. 洛谷P1066 2^k进制数

    P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...

  8. [luogu]P1066 2^k进制数[数学][递推][高精度]

    [luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻 ...

  9. [转]as3 算法实例【输出1 到最大的N 位数 题目:输入数字n,按顺序输出从1 最大的n 位10 进制数。比如输入3,则输出1、2、3 一直到最大的3 位数即999。】

    思路:如果我们在数字前面补0的话,就会发现n位所有10进制数其实就是n个从0到9的全排列.也就是说,我们把数字的每一位都从0到9排列一遍,就得到了所有的10进制数. /** *ch 存放数字 *n n ...

随机推荐

  1. 转 ORA-00054 的解决方法

    统有一个不用的索引,想删除这个索引, SQL> drop index GPSTIME_GLOBAL_INDEX  2  /drop index GPSTIME_GLOBAL_INDEX      ...

  2. oracle (DBaaS) 服务介绍

    转 https://oracle-base.com/articles/vm/oracle-cloud-database-as-a-service-dbaas-create-service?utm_so ...

  3. XML To Linq 读取Sharepoint列表中的附件列信息

    通过页面查看,列表附件信息列的内容如下: var x = @"<div class='ExternalClass9936DCD1F074427B891D09CFCEFC2AB6'> ...

  4. [转]WF事件驱动

    本文转自:http://www.cnblogs.com/Mayvar/archive/2011/09/03/wanghonghua_201109030446.html 已经有不少朋友知道Workflo ...

  5. 关于min-height:100%的解决办法

    前几天碰到一个问题,在用bs和jq2.2.0开发时,min-height设为100%在firefox和ie下没有起作用,先用css改了一下,但是min-height虽然是奏效了,但同时出现了其他css ...

  6. 教你如何在实战项目中使用WCF

    我们都知道调用WCF直接在Service References中引用可以远程调用的WCF Url就行了. 但是我们想过没,在Development环境中可以这样做,但是QA.UAT.Productio ...

  7. java数据结构和算法05(二叉树)

    对于树这个数据结构,第一次看到这个树肯定是一脸蒙逼,玛德,树?种树的那个树么?哈哈哈,当然不是,前面我们说过数组添加.删除数据很慢,查询数据很快:而链表添加.删除数据很快,但是查找数据很慢,我们就想啊 ...

  8. poj3685 Matrix

    思路: 二分套二分. 矩阵在每一列上是严格递增的,可以利用这一点进行二分. 实现: #include <cstdio> #include <cmath> #include &l ...

  9. vue 数组和对象的双向绑定不响应问题

    对象和数组的数据类型是对象,对象是对象这个是毫无疑问的.数组可以把索引当成键名,把索引对应的元素当成该键名的键值. vue对象有些操作不能双向绑定的原因是vue未改变原对象,以及未给新增属性增加set ...

  10. Objective-C Properties

    Objective-C Properties Apple introduced properties, a combination of new compiler directivesand a ne ...