传送门

D. Clique Problem
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The clique problem is one of the most well-known NP-complete problems. Under some simplification it can be formulated as follows. Consider an undirected graph G. It is required to find a subset of vertices C of the maximum size such that any two of them are connected by an edge in graph G. Sounds simple, doesn't it? Nobody yet knows an algorithm that finds a solution to this problem in polynomial time of the size of the graph. However, as with many other NP-complete problems, the clique problem is easier if you consider a specific type of a graph.

Consider n distinct points on a line. Let the i-th point have the coordinate xi and weight wi. Let's form graph G, whose vertices are these points and edges connect exactly the pairs of points (i, j), such that the distance between them is not less than the sum of their weights, or more formally: |xi - xj| ≥ wi + wj.

Find the size of the maximum clique in such graph.

Input

The first line contains the integer n (1 ≤ n ≤ 200 000) — the number of points.

Each of the next n lines contains two numbers xi, wi (0 ≤ xi ≤ 109, 1 ≤ wi ≤ 109) — the coordinate and the weight of a point. All xi are different.

Output

Print a single number — the number of vertexes in the maximum clique of the given graph.

Sample test(s)
Input
4
2 3
3 1
6 1
0 2
Output
3
Note

If you happen to know how to solve this problem without using the specific properties of the graph formulated in the problem statement, then you are able to get a prize of one million dollars!

The picture for the sample test.

题意:

选出一个最大的集合,集合里面的点两两之间满足:|xi - xj| ≥ wi + wj.

题解:

贪心,先按x排序。设xj<xi<xk

若xi-xj>=wi+wj;

xk-xi>=wk+wi;

则xk-xj>=wk+wj+2*wi>=wk+wj。

故相邻的点之间满足条件,则所有点均满足条件。

继续,xi-xj>=wi+wj; 等价于 xi-wi>=xj+wj;

即前一个点的x+w的和要尽可能小。

1.若当前点与前一个点满足条件,则ans++,xnow=x[i],wnow=w[i];

2.若与前一个点不满足条件,则看 x+w的和的关系,若x+w<xnow+wnow,由于x是递增关系,x-w必然更大,则与前一个点满足条件的集合,肯定也与当前点满足。

故舍弃前一个点,取当前点xnow=x[i],wnow=w[i];  反之,舍弃当前点。

10349119 2015-03-19 16:14:45 njczy2010 D - Clique Problem GNU C++ Accepted 93 ms 1384 KB
 #include <cstdio>
#include <cstring>
#include <stack>
#include <vector>
#include <algorithm>
#include <queue>
#include <map>
#include <string>
#include <set> #define ll long long
int const N = ;
int const M = ;
int const inf = ;
ll const mod = ; using namespace std; int n;
int xnow,wnow;
int ans; typedef struct
{
int x;
int w;
}PP; PP p[N]; bool cmp(PP a,PP b)
{
return a.x<b.x;
} void ini()
{
ans=;
int i;
for(i=;i<=n;i++){
scanf("%d%d",&p[i].x,&p[i].w);
}
sort(p+,p++n,cmp);
} void solve()
{
int i;
ans=;
xnow=p[].x;
wnow=p[].w;
for(i=;i<=n;i++){
if(p[i].x-xnow>=p[i].w+wnow){
xnow=p[i].x;
wnow=p[i].w;
ans++;
}
else{
if(p[i].x+p[i].w<xnow+wnow){
xnow=p[i].x;
wnow=p[i].w;
}
}
}
} void out()
{
printf("%d\n",ans);
} int main()
{
// freopen("data.in","r",stdin);
//scanf("%d",&T);
//for(cnt=1;cnt<=T;cnt++)
while(scanf("%d",&n)!=EOF)
{
ini();
solve();
out();
}
}

Codeforces Round #296 (Div. 2) D. Clique Problem [ 贪心 ]的更多相关文章

  1. Codeforces Round #296 (Div. 1) B. Clique Problem 贪心

    B. Clique Problem time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  2. Codeforces Round #296 (Div. 1) B - Clique Problem

    B - Clique Problem 题目大意:给你坐标轴上n个点,每个点的权值为wi,两个点之间有边当且仅当 |xi - xj| >= wi + wj, 问你两两之间都有边的最大点集的大小. ...

  3. CF #296 (Div. 1) B. Clique Problem 贪心(构造)

    B. Clique Problem time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  4. Codeforces Round #296 (Div. 1) C. Data Center Drama 欧拉回路

    Codeforces Round #296 (Div. 1)C. Data Center Drama Time Limit: 2 Sec  Memory Limit: 256 MBSubmit: xx ...

  5. Codeforces Round #367 (Div. 2) C. Hard problem

    题目链接:Codeforces Round #367 (Div. 2) C. Hard problem 题意: 给你一些字符串,字符串可以倒置,如果要倒置,就会消耗vi的能量,问你花最少的能量将这些字 ...

  6. Codeforces Round #603 (Div. 2) A. Sweet Problem(水.......没做出来)+C题

    Codeforces Round #603 (Div. 2) A. Sweet Problem A. Sweet Problem time limit per test 1 second memory ...

  7. Codeforces Round #367 (Div. 2) C. Hard problem(DP)

    Hard problem 题目链接: http://codeforces.com/contest/706/problem/C Description Vasiliy is fond of solvin ...

  8. Codeforces Round #296 (Div. 1) E. Triangles 3000

    http://codeforces.com/contest/528/problem/E 先来吐槽一下,一直没机会进div 1, 马力不如当年, 这场题目都不是非常难,div 2 四道题都是水题! 题目 ...

  9. Codeforces Round #361 (Div. 2) C.NP-Hard Problem

    题目连接:http://codeforces.com/contest/688/problem/C 题意:给你一些边,问你能否构成一个二分图 题解:二分图:二分图又称作二部图,是图论中的一种特殊模型. ...

随机推荐

  1. Web前端攻防,一不小心就中招了

    随着各浏览器安全功能的提高,前端防御面临的问题也没有之前那么复杂,但浏览器的防御措施并不能百分百的保证网站的安全. 浏览器的XSS Auditor,使得反射型xss几乎被废:CSP(Content-S ...

  2. React-Native 开发问题整理

    1.内嵌WebView,点击输入框后页面不自动上滚 <activity android:name=".MainActivity" android:label="@s ...

  3. sql server 2000备份还原数据库

    转载请注明出处:http://blog.csdn.net/neochan1108/article/details/79248017 备份: -- Create the backup device fo ...

  4. COGS 886. [USACO 4.2] 完美的牛栏

    ★★☆   输入文件:stall4.in   输出文件:stall4.out   简单对比时间限制:1 s   内存限制:128 MB USACO/stall4(译by Felicia Crazy) ...

  5. linux 安装nginx 集成emq

    1:下载nginx-1.12.2.tar.gz http://nginx.org/en/download.html 2:解压 tar -zxvf  nginx-1.12.2.tar.gz 3:进行co ...

  6. loadClass和forName 的区别

    类的加载方式 1.隐式加载:new 2.显式加载,loadClass,forName 等 loadClass 和 forName的区别 类的装载过程 1.加载:通过classLoader加载class ...

  7. Node.js 创建server服务器

    var http=require('http'); //引入http模块 var server=http.createServer(function(req,res){  //创建一个server r ...

  8. 用css实现html中单选框样式改变

     我们都知道,input的单选框是一个小圆框,不能直接更改样式.但是我们在很多网页中看到的单选框样式可不仅限于默认的那个样式(看上去没啥新意,也比较丑).那么,接下来我将介绍下如何实现该功能. 首先, ...

  9. 计算机网络之TCP拥塞控制

    1. 首先,拥塞控制和流量控制是不一样的. 拥塞控制是防止过多的数据注入到网络中,可以使网络中的路由器或链路不致过载,是一个全局性的过程.  流量控制是点对点通信量的控制,是一个端到端的问题,主要就是 ...

  10. FFT NTT 模板

    NTT: #include<cstdio> #include<cstring> #include<algorithm> using namespace std; # ...