[luoguP1586] 四方定理(DP 背包)
相当于背包,
f[i][j] 表示当前数为 i,能分解成 j 个数的平方的和的数量
那么就是统计背包装物品的数量
——代码
#include <cmath>
#include <cstdio>
#include <iostream>
#define max(x, y) ((x) > (y) ? (x) : (y)) int t, n, m, sum;
int a[101], f[100001][5]; inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
} int main()
{
int i, j, k;
t = read();
for(i = 1; i <= t; i++)
{
a[i] = read();
n = max(n, a[i]);
}
f[0][0] = 1;
m = sqrt(n);
for(i = 1; i <= m; i++)
for(j = i * i; j <= n; j++)
for(k = 1; k <= 4; k++)
f[j][k] += f[j - i * i][k - 1];
for(i = 1; i <= t; i++)
{
sum = 0;
for(j = 1; j <= 4; j++) sum += f[a[i]][j];
printf("%d\n", sum);
}
return 0;
}
[luoguP1586] 四方定理(DP 背包)的更多相关文章
- luogu P1586 四方定理(背包)
题意 题解 首先吐槽一下体面的第一句话.反正我不知道(可能是因为我太菜了) 可能没有睡醒,没看出来是个背包. 但告诉是个背包了应该就好做了. #include<iostream> #inc ...
- 洛谷P1586 四方定理
题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...
- 洛谷 P1586 四方定理
P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+2 ...
- 四方定理(递归) --java
四方定理 数论中有著名的四方定理:所有自然数至多只要用四个数的平方和就可以表示. 我们可以通过计算机验证其在有限范围的正确性. import java.*; import java.util.*; p ...
- P1586 四方定理
题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...
- 【bzoj1688】[USACO2005 Open]Disease Manangement 疾病管理 状态压缩dp+背包dp
题目描述 Alas! A set of D (1 <= D <= 15) diseases (numbered 1..D) is running through the farm. Far ...
- 洛谷——P1586 四方定理
P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42,当然 ...
- URAL_1018 Binary Apple Tree 树形DP+背包
这个题目给定一棵树,以及树的每个树枝的苹果数量,要求在保留K个树枝的情况下最多能保留多少个苹果 一看就觉得是个树形DP,然后想出 dp[i][j]来表示第i个节点保留j个树枝的最大苹果数,但是在树形过 ...
- java实现第二届蓝桥杯四方定理
四方定理. 数论中有著名的四方定理:所有自然数至多只要用四个数的平方和就可以表示. 我们可以通过计算机验证其在有限范围的正确性. 对于大数,简单的循环嵌套是不适宜的.下面的代码给出了一种分解方案. 请 ...
随机推荐
- web自动化测试—selenium游览器多窗口操作
# coding=utf-8'''web游览器多窗口操作: 获取当前窗口句柄 current_window_handle 获取所有窗口句柄 window_handles 切换窗口 switch_to_ ...
- 个人微信号二次开发SDK协议,个人微信号二次开发api接口
通过这个API接口可以做什么? 通过我们提供的API接口您可以开发: 工作手机(如:X创,X码,XX管家等) 微信群讲课软件(如:讲课X师,一起X堂等) 微信社群管理软件(如:小X管家,微X助手等) ...
- goalng——time包学习
1.星期:type Weekday int const ( Sunday Weekday = iota Monday Tuesday Wednesday Thursday Friday Saturda ...
- Codefoces 828C
C. String Reconstruction time limit per test 2 seconds memory limit per test 256 megabytes input sta ...
- Joseph UVA 1452 Jump
题目传送门 /* 数学:约瑟夫环问题的变形,首先定义f[i]表示剩下i个人时,最后一个选出的人,有个公式:f[i] = (f[i-1] + m) % i f[1] = 0(编号从0开始),那么类似最后 ...
- Javascript对象基础讲解
1.Object对象详解 javascript 里最基本的数据类型是对象. avaScript里的对象其实是一个无序的属性集合,属性又是一个个的名-值对. 除了字符串,数字,true,false,nu ...
- Win7上安装Oracle数据库
由于ORACLE并没有FOR WIN7的版本,必须下载for vista_w2k8这个版本,将oralce 10G的安装镜像解压到硬盘,然后修改安装目录下的rehost.xml和oraparam.in ...
- Redis基础---5个基本数据结构(比较性记忆)
“ Redis是一个内存数据库,只用硬盘来进行持久化. Mongodb是半内存数据库 Mysql是硬盘数据库 ” 1. Redis启动 安装好了之后.运行redis-3.2.8/src/下的redis ...
- leetcode343 Integer Break
思路: 将n不断拆分3出来直至其小于或等于4. 实现: class Solution { public: int integerBreak(int n) { ] = {, , , }; ) retur ...
- Android 6.0权限分组
Android系统从6.0开始将权限分为一般权限和危险权限,一般权限指不涉及用户隐私的一些权限,比如Internet权限.危险权限指涉及获取用户隐私的一些操作所需要的权限,比如读取用户地理位置的权限. ...