Dice

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 491    Accepted Submission(s): 290

Problem Description
   There are 2 special dices on the table. On each face of the dice, a distinct number was written. Consider a1.a2,a3,a4,a5,a6 to be numbers written on top face, bottom face, left face, right face, front face and back face of dice A. Similarly, consider b1.b2,b3,b4,b5,b6 to be numbers on specific faces of dice B. It’s guaranteed that all numbers written on dices are integers no smaller than 1 and no more than 6 while ai ≠ aj and bi ≠ bj for all i ≠ j. Specially, sum of numbers on opposite faces may not be 7.
   At the beginning, the two dices may face different(which means there exist some i, ai ≠ bi). Ddy wants to make the two dices look the same from all directions(which means for all i, ai = bi) only by the following four rotation operations.(Please read the picture for more information)   Now Ddy wants to calculate the minimal steps that he has to take to achieve his goal.
 
Input
   There are multiple test cases. Please process till EOF.
   For each case, the first line consists of six integers a1,a2,a3,a4,a5,a6, representing the numbers on dice A.
   The second line consists of six integers b1,b2,b3,b4,b5,b6, representing the numbers on dice B.
 
Output
   For each test case, print a line with a number representing the answer. If there’s no way to make two dices exactly the same, output -1.
 
Sample Input
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 5 6 4 3
1 2 3 4 5 6
1 4 2 5 3 6
 
Sample Output
0
3
-1
 
Source
 
Recommend
hujie   |   We have carefully selected several similar problems for you:  5017 5016 5014 5013 5011 
 

卜神的代码

为了测试康托展开, 文中注释部分是卜神原来的代码,也是ac的。

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std; typedef long long ll; const int CANTO = ;
const int LEN = ; int fac[];
bool vis[CANTO];
int begin, end;
struct Sit
{
int arr[LEN];
int step;
}; void makefac()
{
fac[] = fac[] = ;
for(int i = ; i <= ; i++)
fac[i] = i * fac[i-];
} int canto(int arr[])
{
int res = ;
for(int i = ; i < LEN; i++){
int num=;
for(int j=i+;j<LEN;j++)
if(arr[j]<arr[i]) num++;
res+=(num*fac[LEN-i-]);
}
// res += fac[i+2] * arr[i];
return res;
} int bfs(Sit src)
{
queue <Sit> q;
Sit now, tmp;
int t, c;
vis[begin] = true;
q.push(src);
while(!q.empty())
{
now = q.front();
q.pop();
tmp = now, tmp.step++; t = tmp.arr[];
tmp.arr[] = tmp.arr[];
tmp.arr[] = tmp.arr[];
tmp.arr[] = tmp.arr[];
tmp.arr[] = t;
c = canto(tmp.arr);
if (c == end){
return tmp.step;
}
if (!vis[c]){
vis[c] = true;
q.push(tmp);
}
tmp = now, tmp.step++; t = tmp.arr[];
tmp.arr[] = tmp.arr[];
tmp.arr[] = tmp.arr[];
tmp.arr[] = tmp.arr[];
tmp.arr[] = t;
c = canto(tmp.arr);
if (c == end){
return tmp.step;
}
if (!vis[c]){
vis[c] = true;
q.push(tmp);
} tmp = now, tmp.step++; t = tmp.arr[];
tmp.arr[] = tmp.arr[];
tmp.arr[] = tmp.arr[];
tmp.arr[] = tmp.arr[];
tmp.arr[] = t;
c = canto(tmp.arr);
if (c == end){
return tmp.step;
}
if (!vis[c]){
vis[c] = true;
q.push(tmp);
} tmp = now, tmp.step++; t = tmp.arr[];
tmp.arr[] = tmp.arr[];
tmp.arr[] = tmp.arr[];
tmp.arr[] = tmp.arr[];
tmp.arr[] = t;
c = canto(tmp.arr);
if (c == end){
return tmp.step;
}
if (!vis[c]){
vis[c] = true;
q.push(tmp);
}
}
return -;
} int main()
{
makefac();
int src[LEN];
int dst[LEN];
while(~scanf("%d", src)){
memset(vis, , sizeof(vis));
for(int i = ; i < LEN; i++)
scanf("%d", src+i);
for(int i = ; i < LEN; i++)
scanf("%d", dst+i);
begin = canto(src);
end = canto(dst);
if (begin == end){
printf("0\n");
continue;
}
Sit x;
memcpy(x.arr, src, LEN*sizeof(int));
x.step = ;
printf("%d\n", bfs(x));
}
return ;
}

经过以下代码验证,网上的代码,康托展开是连续值,卜神的只是起到了展开作用,不过代码更加简洁。

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std; typedef long long ll; const int CANTO = ;
const int LEN = ; int fac[];
int a[LEN]; void makefac()
{
fac[] = fac[] = ;
for(int i = ; i <= ; i++)
fac[i] = i * fac[i-];
} int canto(int arr[])
{
int res = ;
for(int i = ; i < LEN; i++){
int num=;
for(int j=i+;j<LEN;j++)
if(arr[j]<arr[i]) num++;
res+=(num*fac[LEN-i-]);
}
// res += fac[i+2] * arr[i];
return res;
} int canto2(int arr[])
{
int res = ;
for(int i = ; i < LEN; i++){
// int num=0;
// for(int j=i+1;j<LEN;j++)
// if(arr[j]<arr[i]) num++;
// res+=(num*fac[LEN-i-1]);
res += fac[i+] * arr[i];
}
// res += fac[i+2] * arr[i];
return res;
} int main()
{
freopen("data.out","w",stdout);
makefac();
a[]=;a[]=;a[]=;a[]=;a[]=;a[]=;
printf("a=%d %d %d %d %d %d ",a[],a[],a[],a[],a[],a[]);
printf("can=%d %d\n",canto(a),canto2(a));
while(next_permutation(a+, a + LEN) ){
printf("a=%d %d %d %d %d %d ",a[],a[],a[],a[],a[],a[]);
printf("can=%d %d\n",canto(a),canto2(a));
}
return ;
}
 a=      can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=
a= can=

hdu 5012 bfs 康托展开的更多相关文章

  1. hdu 1430 (BFS 康托展开 或 map )

    第一眼看到这题就直接BFS爆搜,第一发爆了内存,傻逼了忘标记了,然后就改,咋标记呢. 然后想到用map函数,就8!个不同的排列,换成字符串用map标记.然后又交一发果断超时,伤心,最恨超时,还不如来个 ...

  2. hdu 1430(BFS+康托展开+映射+输出路径)

    魔板 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  3. HDU_1043 Eight 【逆向BFS + 康托展开 】【A* + 康托展开 】

    一.题目 http://acm.hdu.edu.cn/showproblem.php?pid=1043 二.两种方法 该题很明显,是一个八数码的问题,就是9宫格,里面有一个空格,外加1~8的数字,任意 ...

  4. HDU 1043 Eight(双向BFS+康托展开)

    http://acm.hdu.edu.cn/showproblem.php?pid=1043 题意:给出一个八数码,求出到达指定状态的路径. 思路:路径寻找问题.在这道题里用到的知识点挺多的.第一次用 ...

  5. HDU - 1430 魔板 【BFS + 康托展开 + 哈希】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1430 思路 我刚开始 想到的 就是 康托展开 但是这个题目是 多组输入 即使用 康托展开 也是会T的 ...

  6. POJ 1077 && HDU 1043 Eight A*算法,bfs,康托展开,hash 难度:3

    http://poj.org/problem?id=1077 http://acm.hdu.edu.cn/showproblem.php?pid=1043 X=a[n]*(n-1)!+a[n-1]*( ...

  7. 【HDU - 1043】Eight(反向bfs+康托展开)

    Eight Descriptions: 简单介绍一下八数码问题:在一个3×3的九宫格上,填有1~8八个数字,空余一个位置,例如下图: 1 2 3 4 5 6 7 8   在上图中,由于右下角位置是空的 ...

  8. hdu.1430.魔板(bfs + 康托展开)

    魔板 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  9. loj 1165(bfs+康托展开)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=26879 思路:题目意思很简单,就是通过一些位置的交换,最后变成有序 ...

随机推荐

  1. 在hibernate框架中配置显示sql语句

    使用Hibernate的框架开发时,可在Hibernate.cfg.xml中加上 <property name="hibernate.show_sql">true< ...

  2. 虚拟DOM -------- 最易理解的解释

    虚拟DOM是最先由Facebook在react里使用的, 虚拟DOM是一个特别棒的概念,我们都知道,在浏览器上进行DOM操作的时候,会特别的消耗性能而且响应.渲染特别慢,但是有了虚拟DOM就不一样了, ...

  3. vue 中 $set 的使用

    在我们使用vue进行开发的过程中,可能会遇到一种情况:当生成vue实例后,当再次给数据赋值时,有时候并不会自动更新到视图上去: <!DOCTYPE html> <html> & ...

  4. python基础一 day11 装饰器复习

    # 复习# 讲作业# 装饰器的进阶 # functools.wraps # 带参数的装饰器 # 多个装饰器装饰同一个函数# 周末的作业 # 文件操作 # 字符串处理 # 输入输出 # 流程控制 # 装 ...

  5. delphi win7 and high path

    Close DelphiLocate bordbk120N.dll (C:\Program Files (x86)\CodeGear\RAD Studio\6.0\bin)Make a backup ...

  6. Android 使用 adb命令 远程安装apk

    Android 使用 adb命令 远程安装apk ./adb devices 列出所有设备 ./adb connect 192.168.1.89 连接到该设备 ./adb logcat 启动logca ...

  7. struts2的动态方法配置

    动态方法调用配置 <package name="test" extends="struts-default"> <aciton name=&q ...

  8. urlrewrite地址重写实例

    urlrewrite主要实现后天请求中的地址重写,防止被安全漏洞盲注入 http://tuckey.org/urlrewrite/ 下载最新的jar 下面是使用说明: 1.下载urlrewrite,官 ...

  9. ios retain copy 以及copy协议

    阅读本文之前首先了解Copy与Retain的区别: Copy是创建一个新对象,Retain是创建一个指针,引用对象计数加1. Copy属性表示两个对象内容相同,新的对象retain为1 ,与旧有对象的 ...

  10. 经典的7种排序算法 原理C++实现

    排序是编程过程中经常遇到的操作,它在很大程度上影响了程序的执行效率. 7种常见的排序算法大致可以分为两类:第一类是低级排序算法,有选择排序.冒泡排序.插入排序:第二类是高级排序算法,有堆排序.排序树. ...