传送门

题意

有一个数列a,要求你求数列b和c,b[i]是a[i]…a[i+w-1]中的最小值,c[i]是最大值。如果a是1,3,-1,-3,5,3,6,7,则b为-1,-3,-3,-3,3,3,c为3,3,5,5,6,7。

分析

单调队列裸题,不过第一次写单调队列发现了很多trick

代码

#include <bits/stdc++.h>
using namespace std; #define ll long long
#define F(i,a,b) for(int i=a;i<=b;++i)
#define R(i,a,b) for(int i=a;i<b;++i)
#define mem(a,b) memset(a,b,sizeof(a))
#pragma comment(linker, "/STACK:102400000,102400000")
inline void read(int &x){x=0; char ch=getchar();while(ch<'0') ch=getchar();while(ch>='0'){x=x*10+ch-48; ch=getchar();}} int a[1001000],n,k,l,r,b[1001000];
pair<int,int>q[1001000];//1
int main()
{
//freopen("data.in","r",stdin);
//freopen("wa.out","w",stdout);
while(scanf("%d %d",&n,&k)==2)
{
R(i,0,n) scanf("%d",a+i);
l=r=0;
q[r++]=make_pair(0,a[0]);
R(i,1,k)
{
while(r&&a[i]<=q[r-1].second) r--;//2
q[r++]=make_pair(i,a[i]);
}
b[1]=q[l].second;
R(i,k,n)
{
while(r&&a[i]<=q[r-1].second) r--;
l=min(l,r);//3
q[r++]=make_pair(i,a[i]);
while(i-k>q[l].first-1) l++;//4
//printf("l=%d r=%d\n",l,r);
b[i-k+2]=q[l].second;
}
// R(i,0,r) printf("%d%c",q[i].second,i==r-1?'\n':' ');
F(i,1,n-k+1) printf("%d%c",b[i],i==n-k+1?'\n':' ');
l=r=0;
q[r++]=make_pair(0,a[0]);
R(i,1,k)
{
while(r&&a[i]>=q[r-1].second) r--;
q[r++]=make_pair(i,a[i]);
}
b[1]=q[l].second;
R(i,k,n)
{
while(r&&a[i]>=q[r-1].second) r--;
l=min(l,r);
q[r++]=make_pair(i,a[i]);
while(i-k>q[l].first-1) l++;
// printf("l=%d r=%d\n",l,r);
b[i-k+2]=q[l].second;
}
F(i,1,n-k+1) printf("%d%c",b[i],i==n-k+1?'\n':' ');
}
return 0;
}
/*
1.用pair记录每个放入队列的数的下标和值
2.从后往前找插入的位置,顺便删除后面的元素
3.更新左端点l
4.如果左端点的下标小于区域左端点,更逊左端点
*/

POJ2823:Sliding Window的更多相关文章

  1. POJ 2823:Sliding Window 单调队列

    Sliding Window Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 48930   Accepted: 14130 ...

  2. 【poj2823】 Sliding Window

    http://poj.org/problem?id=2823 (题目链接) 题意 维护滑动窗口最大最小值. Solution sb单调队列 代码 // poj2823 #include<algo ...

  3. 【POJ2823】Sliding Window

    http://poj.org/problem?id=2823 题意:你有一个长度n的序列,分别询问[1,k],[2,k+1],[3,k+2],...,[n-k+1,n]这n-k+1个区间的最大值和最小 ...

  4. Sliding Window Matrix Maximum

    Description Given an array of n * m matrix, and a moving matrix window (size k * k), move the window ...

  5. POJ2823 Sliding Window (单调队列)

    POJ2823 Sliding Window Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 38342   Accepte ...

  6. codevs4373 窗口==poj2823 Sliding Window

    Sliding Window Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 53676   Accepted: 15399 ...

  7. sliding window:"Marginalization","Schur complement","First estimate jacobin"

    [1]知行合一2 SLAM中的marginalization 和 Schur complement SLAM的Bundle Adjustment上,随着时间的推移,路标特征点(landmark)和相机 ...

  8. 题解报告:poj 2823 Sliding Window(单调队列)

    Description An array of size n ≤ 106 is given to you. There is a sliding window of size k which is m ...

  9. POJ2823 Sliding Window

    Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 53086   Accepted: 15227 Case Time Limi ...

随机推荐

  1. gcc,gdb基础学习1

    gcc: (1)gcc -O1 -S code.c   这里的-S可以的到code.c的汇编(只进行了预处理和编译这:两个阶段形成 了汇编代码code·s) (2)gcc -c code.c   这里 ...

  2. python学习之-- redis模块基本介绍

    数据缓存系统: 1:mongodb:是直接持久化,直接存储于硬盘的缓存系统 2:redis: 半持久化,存储于内存和硬盘 3:memcache:数据只能存储在内存里的缓存系统关于memcache 学习 ...

  3. HDU 1024 【DP】

    题意: 给n个数将其分成连续的m组,使得这些组的数加和最大,组与组之间可以空数. /* dp[i][j]表示将前j个数分成i个组最大值 状态转移方程是: dp[i][j]=max(dp[i-1][0. ...

  4. POJ 3159 【朴素的差分约束】

    好吧终于知道什么是“高大上”的差分约束了.嗷嗷 题意: 小朋友们分糖果,某个小朋友不想另外一个小朋友分到的糖果数比自己多N块以上. 求编号为N的小朋友最多比编号为1的小朋友多分多少块糖果. 思路: 差 ...

  5. Spring4 基本使用

    前言 虽然现在基本上是 springboot 的天下了,但是传统的 spring4 在广大的软件企业中仍然占据很大比例.一上手能用,但是要让我从无到有搭一个spring4的开发环境出来,可能会磕磕碰碰 ...

  6. 分享一下然让显卡满血复活的小技巧(GTX)

    分享一下然让显卡满血复活的小技巧 笔者在玩大型游戏卡顿15fps下载如下操作 GTX950玩大型游戏都不会卡帧率稳定在30fps 下载GeForce Experience下载更新最新驱动 下载如下程序 ...

  7. chrome插件vimium的安装和使用

    vimium工具的作用:使你脱离鼠标,使用键盘方便操作页面,默认对所有网站生效 1.chrome商店里有的,但是,我怎么安装,都不行 2.源码安装:http://vimium.github.io/ h ...

  8. markdown 插入latex公式练习

    markdown 插入latex公式 $$公式$$表示行间公式,本来Tex中使用\(公式\)表示行内公式,但因为Markdown中\是转义字符,所以在Markdown中输入行内公式使用\\(公式\\) ...

  9. 报错** is not accessible due to restriction on required library

    报错: Description Resource Path Location TypeAccess restriction: The type Map<String,Object> is ...

  10. “约定优于配置”与Magento改造尝试四之block、helper和model载入

    暂定本章为这个系列最后一章,还是继续沿用模块的别名(alias)概念 <modules> <Mage_Wishlist> <version>1.6.0.0</ ...