先把水泥路建生成树,然后加鹅卵石路,这里加的鹅卵石路是一定要用的(连接各个联通块),然后初始化并查集,先把必需的鹅卵石路加进去,然后随便加鹅卵石路直到k条,然后加水泥路即可。

注意判断无解

#include<iostream>
#include<cstdio>
using namespace std;
const int N=20005,M=100005;
int n,m,k,f[N],ta,tb,con;
bool v[M];
struct qwe
{
int u,v;
qwe(int U=0,int V=0)
{
u=U,v=V;
}
}a[M],b[M],ans[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int zhao(int x)
{
return f[x]==x?x:f[x]=zhao(f[x]);
}
int main()
{
n=read(),m=read(),k=read();
for(int i=1;i<=m;i++)
{
int x=read(),y=read(),z=read();
if(z)
a[++ta]=qwe(x,y);
else
b[++tb]=qwe(x,y);
}
if(tb<k)
{
printf("no solution\n");
return 0;
}
for(int i=1;i<=n;i++)
f[i]=i;
for(int i=1;i<=ta;i++)
{
int fu=zhao(a[i].u),fv=zhao(a[i].v);
if(fu!=fv)
f[fu]=fv;
}
for(int i=1;i<=tb;i++)
{
int fu=zhao(b[i].u),fv=zhao(b[i].v);
if(fu!=fv)
f[fu]=fv,v[i]=1,k--;
}
if(k<0)
{
printf("no solution\n");
return 0;
}
for(int i=1;i<=n;i++)
f[i]=i;
for(int i=1;i<=tb;i++)
if(v[i])
{
f[zhao(b[i].u)]=zhao(b[i].v);
ans[++con]=qwe(b[i].u,b[i].v);
}
for(int i=1;i<=tb&&k;i++)
{
int fu=zhao(b[i].u),fv=zhao(b[i].v);
if(fu!=fv)
{
f[fu]=fv,k--;
ans[++con]=qwe(b[i].u,b[i].v);
}
}
if(k)
{
printf("no solution\n");
return 0;
}
for(int i=1;i<=con;i++)
printf("%d %d 0\n",ans[i].u,ans[i].v);
for(int i=1;i<=ta;i++)
{
int fu=zhao(a[i].u),fv=zhao(a[i].v);
if(fu!=fv)
{
f[fu]=fv;
printf("%d %d 1\n",a[i].u,a[i].v);
}
}
return 0;
}

bzoj 3624: [Apio2008]免费道路【生成树+贪心】的更多相关文章

  1. bzoj 3624: [Apio2008]免费道路 生成树的构造

    3624: [Apio2008]免费道路 Time Limit: 2 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 111  Solved: 4 ...

  2. Bzoj 3624: [Apio2008]免费道路 (贪心+生成树)

    Sample Input 5 7 2 1 3 0 4 5 1 3 2 0 5 3 1 4 3 0 1 2 1 4 2 1 Sample Output 3 2 0 4 3 0 5 3 1 1 2 1 这 ...

  3. BZOJ 3624: [Apio2008]免费道路 [生成树 并查集]

    题意: 一张图0,1两种边,构造一个恰有k条0边的生成树 优先选择1边构造生成树,看看0边是否小于k 然后保留这些0边,补齐k条,再加1边一定能构成生成树 类似kruskal的证明 #include ...

  4. BZOJ 3624: [Apio2008]免费道路

    3624: [Apio2008]免费道路 Time Limit: 2 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1201  Solved:  ...

  5. BZOJ 3624 [Apio2008]免费道路:并查集 + 生成树 + 贪心【恰有k条特殊路径】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3624 题意: 给你一个无向图,n个点,m条边. 有两种边,种类分别用0和1表示. 让你求一 ...

  6. BZOJ.3624.[APIO2008]免费道路(Kruskal)

    题目链接 我们发现有些白边是必须加的,有些是多余的. 那么我们先把所有黑边加进去,然后把必须要加的白边找出来. 然后Kruskal,把必须要加的白边先加进去,小于K的话再加能加的白边.然后加黑边. 要 ...

  7. 【BZOJ3624】【APIO2008】免费道路 [生成树][贪心]

    免费道路 Time Limit: 2 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Input Output Sampl ...

  8. [APIO2008]免费道路(生成树)

    新亚(New Asia)王国有 N 个村庄,由 M 条道路连接.其中一些道路是鹅卵石路,而其它道路是水泥路.保持道路免费运行需要一大笔费用,并且看上去 王国不可能保持所有道路免费.为此亟待制定一个新的 ...

  9. 3624: [Apio2008]免费道路

    Description Input Output Sample Input 5 7 2 1 3 0 4 5 1 3 2 0 5 3 1 4 3 0 1 2 1 4 2 1 Sample Output ...

随机推荐

  1. Java有几种线程池?

    Java通过Executors提供四种线程池,分别为:newCachedThreadPool创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程newFixed ...

  2. iOS 自动识别URL(链接)功能的实现

    功能需求  在做“沃迪康”聊天功能时,甲方要求发送的网址要自动识别.并点击能自动跳转 功能难点  在实现过程中,所有的文字都是动态获取的,设置富文本属性时,不能按照常规的方法 解决方式 如果只是文字, ...

  3. kis

    http://5.xp510.com:801/xp2011/%E9%87%91%E8%9D%B6kis%E4%B8%93%E4%B8%9A%E7%89%88.rar

  4. Windows平台下Git(gitblit)服务器搭建

    环境:Windows 10 专业版32位 因为公司服务器上已经搭了Visual SVN等,只好在Windows上搭个Git Server给大家用. 参考链接:http://www.cnblogs.co ...

  5. Linux 网络工具

    1 nethogs nethogs 是一个免费的工具,当要查找哪个 PID (注:即 process identifier,进程 ID) 给你的网络流量带来了麻烦时,它是非常方便的.它按每个进程来分组 ...

  6. 提示:“请检查浏览器代理设置”/xx-net

    1.删除已导入的证书文件(运行certmgr.msc和certlm.msc,然后自己找到xxnet删),2.更新3.3.1(或是自己找到那行代码取消注释,楼下有人提及)3.删除data文件夹(下的ce ...

  7. 【C#】无损转换Image为Icon 【C#】组件发布:MessageTip,轻快型消息提示窗 【C#】给无窗口的进程发送消息 【手记】WebBrowser响应页面中的blank开新窗口及window.close关闭本窗体 【手记】调用Process.EnterDebugMode引发异常:并非所有引用的特权或组都分配给呼叫方 【C#】DataRowState演变备忘

    [C#]无损转换Image为Icon 如题,市面上常见的方法是: var handle = bmp.GetHicon(); //得到图标句柄 return Icon.FromHandle(handle ...

  8. woodcut

    http://www.lintcode.com/en/problem/wood-cut/# 二分答案,贪心验证,具有单调性 class Solution { public: /** *@param L ...

  9. POJ1195 Mobile phones 【二维树状数组】

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14288   Accepted: 6642 De ...

  10. 网络知识: 物理层PHY 和 网络层MAC

    PHY模块简介 物理层位于OSI最底层,物理层协议定义电气信号.线的状态.时钟要求.数据编码和数据传输用的连接器. 物理层的器件称为PHY. 上图里的灰色方框图里的就是PHY芯片内部模块图. MAC器 ...