8.3 STINGY SAT

STINGY SAT is the following problem: given a set of clauses (each a disjunction of literals) and an

integer k, find a satisfying assignment in which at most k variables are true, if such an assignment

exists. Prove that STINGY SAT is NP-complete.

当我们有多项式时间算法解决SAT问题时,我们可以直接解决STINGY SAT

我们取k为变量的个数,如果我们找到了多项式时间的算法解决它,也就是解决了SAT问题。验证答案是显然快速的。

我们成功将SAT归约到了STINGY SAT 证明了 STINGY SAT 是NP-Complete problem

8.14  K-clique problem

Prove that the following problem is NP-complete:given an undirected graph G=(V,E) and an integer k,

return a clique of size k as well as an independent set of size k,provided both exist.

首先,团和独立集是两个相对的概念,寻找k个元素的团和寻找k个元素的独立集是等价命题,这里不展开说明了。

书中已经给出了由3-SAT归约到k-独立集的证明,这里简单叙述一下

对于任意一个有k个clause的3SAT表达式,我们对于每个clause构造一个三点三边呈现三角形的子图,(共有k个三角形)

对于每个变量,两种相反的形式之间连一条边,如果能够找到k个元素的独立集,必然k个点分布在k个三角形,即选择了k个变量,使得表达式满足。验证满足性显然是快速的。

于是,当我们有多项式时间算法解决k独立集问题时,我们就一定有多项式时间算法解决3SAT问题,所以k独立集问题是NP-complete problem.

同样的,k独立集的等价命题 k-clique问题也是NP-complete的。

补充一道有趣的题目 ZOJ1492

该题给定我们一个无向图,求最大团的点数是多少。图的规模小于等于50

这道题我找到了搜索的解法,但是我还没想到办法严格的分析这个dfs的复杂度,但是由于dfs不是记忆化的,所以我猜想它应该是指数复杂度的。

事实上要实现dfs的记忆化,就不得不用指数级的空间来储存数据,这也是无法接受的。

不过这道题的搜索剪枝技巧性还是很强的,毕竟指数级的算法能解决50的规模,已经很不错了。

《算法概论》第八章的一些课后题目 关于NP-Complete Problem的更多相关文章

  1. 算法笔记(c++)--桶排序题目

    算法笔记(c++)--桶排序 记得题目是排序,输入n个1-1000的数字然后去重然后排序. 桶排序没毛病 #include<iostream> using namespace std; i ...

  2. 为什么我要放弃javaScript数据结构与算法(第八章)—— 树

    之前介绍了一些顺序数据结构,介绍的第一个非顺序数据结构是散列表.本章才会学习另一种非顺序数据结构--树,它对于存储需要快速寻找的数据非常有用. 本章内容 树的相关术语 创建树数据结构 树的遍历 添加和 ...

  3. 滤波器算法(1)-卡尔曼滤波小车附带题目与MATLAB程序

    1 简介 由卡尔曼这个学者提出的最佳线性滤波器,单纯时域维度即可实现[无需进行频域变换] 2 思路 由上一时刻的最佳估计值XKE_P预测①当前时刻预测值Pxv 与 ②当前时刻的测量值Mxv 进行联立计 ...

  4. ML: 聚类算法-概论

    聚类分析是一种重要的人类行为,早在孩提时代,一个人就通过不断改进下意识中的聚类模式来学会如何区分猫狗.动物植物.目前在许多领域都得到了广泛的研究和成功的应用,如用于模式识别.数据分析.图像处理.市场研 ...

  5. 【算法】Matrix - Tree 矩阵树定理 & 题目总结

    最近集中学习了一下矩阵树定理,自己其实还是没有太明白原理(证明)类的东西,但想在这里总结一下应用中的一些细节,矩阵树定理的一些引申等等. 首先,矩阵树定理用于求解一个图上的生成树个数.实现方式是:\( ...

  6. 算法导论 第八章 线性时间排序(python)

    比较排序:各元素的次序依赖于它们之间的比较{插入排序O(n**2) 归并排序O(nlgn) 堆排序O(nlgn)快速排序O(n**2)平均O(nlgn)} 本章主要介绍几个线性时间排序:(运算排序非比 ...

  7. 排序算法 以及HKU的一些数据结构 相关题目 以及 K叉树,二叉树 排列

    冒泡排序.选择排序.快速排序.插入排序.希尔排序.归并排序.基数排序以及堆排序,桶排序 https://www.cnblogs.com/Glory-D/p/7884525.html https://b ...

  8. 原创题目 白银之春 Problem and Solution

    白银之春 Solution 比赛用题面.题解.标程和数据生成器都挂在 git@github.com:sun123zxy/spring.git 上. Problem 白银之春 (spring.cpp/. ...

  9. ACM题目————The partial sum problem

    描述 One day,Tom’s girlfriend give him an array A which contains N integers and asked him:Can you choo ...

随机推荐

  1. vue之列表渲染

    一.v-for循环用于数组 v-for 指令根据一组数组的选项列表进行渲染. 1.v-for 指令需要使用 item in items 形式的特殊语法,items 是源数据数组名, item 是数组元 ...

  2. InitializingBean

    org.springframework.beans.factory包下有一个接口是InitializingBean 只有一个方法: /**  * Invoked by a BeanFactory af ...

  3. ffmpeg 时间戳

    转http://blog.csdn.net/yfh1985sdq/article/details/5721953 AVpacket里的时间戳pts和dts.单位好像是us. 问 : 时间戳pts和dt ...

  4. Ubuntu下使用UFW配置防火墙(简化iptables的操作)

    UFW全称为Uncomplicated Firewall,是Ubuntu系统上配置iptables防火墙的工具.UFW提供一个非常友好的命令用于创建基于IPV4,IPV6的防火墙规则. 但是,UFW是 ...

  5. android 获得屏幕宽度和高度

    <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:tools= ...

  6. scp操作实例

    scp 可用于文件的上传与下载,默认端口号是22,通常我们为了安全起见会将默认端口号修改了,而不去直接使用默认的22端口,以下我们以8888端口为例 目标机器 A :192.168.10.30 目标机 ...

  7. electron 开发拆坑总结

    electron 总结 前言 有一个web项目需要用客户端来包装一下 项目的主要业务都在服务器上 所以项目的大多数功能都用url 地址来访问: 客户端登陆界面在本地 打包客户端的本地登陆界面 做为登陆 ...

  8. memchached你知道和不知道的事

  9. TinyXML的使用

    TinyXML TinyXML是一个简单的小型C ++ XML解析器,可以轻松集成到其他程序中. 它能做什么: 简而言之,TinyXML解析XML文档,并从可以读取,修改和保存的文档对象模型(DOM) ...

  10. Linux input子系统实例分析(一)

    这是一个简单的输入设备驱动实例.这个输入设备只有一个按键,按键被连接到一条中断线上,当按键被按下时,将产生一个中断,内核将检测到这个中断,并对其进行处理.该实例的代码如下:     1: #inclu ...