Big Number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 26383    Accepted Submission(s): 12006

Problem Description
In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of
the number.
 
Input
Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 107 on each line.
 
Output
The output contains the number of digits in the factorial of the integers appearing in the input.
 
Sample Input
2
10
20
 
Sample Output
7
19
求大数阶乘的位数。。用java暴力写的。。后来一想我真是脑残10^7不T才怪。看到公式才认为数学果然强大。
推导过程:
在这之前,我们必需要知道一个知识,随意一个正整数a的位数
等于(int)log10(a) + 1。为什么呢?以下给大家推导一下: 对于随意一个给定的正整数a。
如果10^(x-1)<=a<10^x,那么显然a的位数为x位,
又由于
log10(10^(x-1))<=log10(a)<(log10(10^x))
即x-1<=log10(a)<x
则(int)log10(a)=x-1,
即(int)log10(a)+1=x
即a的位数是(int)log10(a)+1 我们知道了一个正整数a的位数等于(int)log10(a) + 1,
如今来求n的阶乘的位数:
如果A=n!=1*2*3*......*n,那么我们要求的就是
(int)log10(A)+1,而:
log10(A)
=log10(1*2*3*......n) (依据log10(a*b) = log10(a) + log10(b)有)
=log10(1)+log10(2)+log10(3)+......+log10(n)
如今我们最终找到方法,问题攻克了。我们将求n的阶乘的位
数分解成了求n个数对10取对数的和,而且对于当中随意一个数,
都在正常的数字范围之类。 总结一下:n的阶乘的位数等于
(int)(log10(1)+log10(2)+log10(3)+......+log10(n)) + 1
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#define ll long long
using namespace std;
int main()
{
int t,n;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
double ans=0;
for(int i=2;i<=n;i++)
ans+=log10(i);
printf("%d\n",1+(int)ans);
}
return 0;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。

HDU 1018-Big Number(数学)的更多相关文章

  1. HDU 1018 Big Number 数学题解

    Problem Description In many applications very large integers numbers are required. Some of these app ...

  2. hdu 1018 Big Number 数学结论

    Big Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  3. HDU 1018 Big Number

    LINK:HDU 1018 题意:求n!的位数~ 由于n!最后得到的数是十进制,故对于一个十进制数,求其位数可以对该数取其10的对数,最后再加1~ 易知:n!=n*(n-1)*(n-2)*...... ...

  4. HDU 1018 Big Number (数学题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1018 解题报告:输入一个n,求n!有多少位. 首先任意一个数 x 的位数 = (int)log10(x ...

  5. hdu 1018:Big Number(水题)

    Big Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  6. HDU 1018 Big Number (阶乘位数)

    题意: 给一个数n,返回该数的阶乘结果是一个多少位(十进制位)的整数. 思路: 用对数log来实现. 举个例子 一个三位数n 满足102 <= n < 103: 那么它的位数w 满足 w ...

  7. hdu 1018 Big Number (数学题)

    Problem Description Inmany applications very large integers numbers are required. Some of theseappli ...

  8. HDU 1018 Big Number【斯特林公式/log10 / N!】

    Big Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  9. HDU 1018 Big Number (log函数求数的位数)

    Problem Description In many applications very large integers numbers are required. Some of these app ...

  10. HDU 1018 Big Number 斯特林公式

    Big Number 题意:算n!的位数. 题解:对于一个数来算位数我们一般都是用while去进行计算,但是n!这个数太大了,我们做不到先算出来在去用while算位数. while(a){ cnt++ ...

随机推荐

  1. BAT笔试试题常见试题总结含答案(持续更新。。。)

    (1)试题例如以下: class A { int a; short b; int c; char d; }; class B { double a; short b; int c; char d; } ...

  2. Cocos3d初探

    预计要相当长的一段时间内研究游戏引擎,在这里做一下过程中的备忘. 上一周项目须要,研究了一下cocos2d-x,本周接着来做cocos3d-x的代码研究 首先是搭建cocos3d-x的开发环境: 依据 ...

  3. [置顶] 一步一步学android之事件篇——下拉列表事件

    上一篇RadioGroup比较简单,所以再学习个spinner的OnItemSelectedListener事件,前面说过spinner的主要功能就是提供列表显示的选择,比如我们在选择城市的时候就会用 ...

  4. Codeforces Round #FF 446 C. DZY Loves Fibonacci Numbers

    參考:http://www.cnblogs.com/chanme/p/3843859.html 然后我看到在别人的AC的方法里还有这么一种神方法,他预先设定了一个阈值K,当当前的更新操作数j<K ...

  5. Android 开源框架Universal-Image-Loader全然解析(二)--- 图片缓存策略具体解释

    转载请注明本文出自xiaanming的博客(http://blog.csdn.net/xiaanming/article/details/26810303),请尊重他人的辛勤劳动成果,谢谢! 本篇文章 ...

  6. I2C操作笔记——以 AT24C04为例

    1.前言     对于大多数project师而言,I2C永远是一个头疼的问题.相比UART和SPI而言,I2C的时序要复杂一些,I2C组合变化也丰富一些.在这里以AT24C04为例说明I2C使用过程中 ...

  7. 关于AIX VG中 LV 的状态问题,LV STATE

    在数据库管理过程中常常遇见LV状态异常,而造成LV不能再次被使用的情况,那么AIX中LV的两种状态分别代表什么呢 如果是访问fs需要open,即创建文件系统并mount 文件系统LV STATE 才是 ...

  8. 通过Java反射调用方法

    这是个测试用的例子,通过反射调用对象的方法.     TestRef.java import java.lang.reflect.Method; import java.lang.reflect.In ...

  9. SpringMVC @ResponseBody 415错误处理

    在查看下面部分内容之前,请先检查你的请求蚕食是否正确,如果全部正确,请继续往下看 刚开始用SpringMVC, 页面要使用jQuery的ajax请求Controller. 但总是失败,主要表现为以下两 ...

  10. NPOI 创建Excel,数据读取与写入

    <1> using System; using System.Collections.Generic; using System.Linq; using System.Web; using ...