st-Spanning Tree
4 seconds
256 megabytes
standard input
standard output
You are given an undirected connected graph consisting of n vertices and m edges. There are no loops and no multiple edges in the graph.
You are also given two distinct vertices s and t, and two values ds and dt. Your task is to build any spanning tree of the given graph (note that the graph is not weighted), such that the degree of the vertex s doesn't exceed ds, and the degree of the vertex t doesn't exceed dt, or determine, that there is no such spanning tree.
The spanning tree of the graph G is a subgraph which is a tree and contains all vertices of the graph G. In other words, it is a connected graph which contains n - 1 edges and can be obtained by removing some of the edges from G.
The degree of a vertex is the number of edges incident to this vertex.
The first line of the input contains two integers n and m (2 ≤ n ≤ 200 000, 1 ≤ m ≤ min(400 000, n·(n - 1) / 2)) — the number of vertices and the number of edges in the graph.
The next m lines contain the descriptions of the graph's edges. Each of the lines contains two integers u and v (1 ≤ u, v ≤ n, u ≠ v) — the ends of the corresponding edge. It is guaranteed that the graph contains no loops and no multiple edges and that it is connected.
The last line contains four integers s, t, ds, dt (1 ≤ s, t ≤ n, s ≠ t, 1 ≤ ds, dt ≤ n - 1).
If the answer doesn't exist print "No" (without quotes) in the only line of the output.
Otherwise, in the first line print "Yes" (without quotes). In the each of the next (n - 1) lines print two integers — the description of the edges of the spanning tree. Each of the edges of the spanning tree must be printed exactly once.
You can output edges in any order. You can output the ends of each edge in any order.
If there are several solutions, print any of them.
3 3
1 2
2 3
3 1
1 2 1 1
Yes
3 2
1 3
7 8
7 4
1 3
5 4
5 7
3 2
2 4
6 1
1 2
6 4 1 4
Yes
1 3
5 7
3 2
7 4
2 4
6 1
分析:根据贪心思想,先把不含s,t联通的联通块连上;
然后把和s相连却不和t相连的联通块加入s,把和t相连却不和s相连的联通块加入t;
然后对于和s和t都相连的联通块依次判断加入即可,最后看s和t是否联通及s和t是否直连即可;
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define Lson L, mid, ls[rt]
#define Rson mid+1, R, rs[rt]
const int maxn=4e5+;
using namespace std;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p;p=p*p;q>>=;}return f;}
inline ll read()
{
ll x=;int f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m,k,t,s,ds,dt,vis[maxn],pos1[maxn],pos2[maxn],cnt,ans1,ans2;
vi e[maxn];
bool f1[maxn],f2[maxn],ok,flag,ca;
vector<pii>ans;
void dfs(int now)
{
vis[now]=cnt;
for(int x:e[now])
{
if(x!=s&&x!=t&&!vis[x])
{
ans.pb(mp(now,x));
dfs(x);
}
else if(x==s)
{
f1[cnt]=true;
pos1[cnt]=now;
}
else if(x==t)
{
f2[cnt]=true;
pos2[cnt]=now;
}
}
}
int main()
{
int i,j;
scanf("%d%d",&n,&m);
while(m--)
{
scanf("%d%d",&j,&k);
e[j].pb(k),e[k].pb(j);
}
scanf("%d%d%d%d",&s,&t,&ds,&dt);
rep(i,,n)
{
if(i!=s&&i!=t&&!vis[i])cnt++,dfs(i);
}
rep(i,,cnt)
{
if(f1[i]&&!f2[i])ans.pb(mp(s,pos1[i])),ans1++;
else if(!f1[i]&&f2[i])ans.pb(mp(t,pos2[i])),ans2++;
}
if(ans1>=ds||ans2>=dt)puts("No");
else
{
ok=true;
rep(i,,cnt)
{
if(f1[i]&&f2[i])
{
flag=true;
if(flag&&ok)
{
ans.pb(mp(s,pos1[i])),ans1++;
ans.pb(mp(t,pos2[i])),ans2++;
ok=false;
}
else
{
if(ans1<ds)ans.pb(mp(s,pos1[i])),ans1++;
else if(ans2<dt)ans.pb(mp(t,pos2[i])),ans2++;
else
{
flag=false;
break;
}
}
}
}
for(int x:e[s])if(x==t){ca=true;break;}
if(!flag&&ca&&ans1<ds&&ans2<dt)flag=true,ans.pb(mp(s,t));
if(!flag)puts("No");
else
{
puts("Yes");
for(pii x:ans)printf("%d %d\n",x.fi,x.se);
}
}
//system("Pause");
return ;
}
st-Spanning Tree的更多相关文章
- codeforces 609E Minimum spanning tree for each edge
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- 【HDU 4408】Minimum Spanning Tree(最小生成树计数)
Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...
- 数据结构与算法分析–Minimum Spanning Tree(最小生成树)
给定一个无向图,如果他的某个子图中,任意两个顶点都能互相连通并且是一棵树,那么这棵树就叫做生成树(spanning tree). 如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Mi ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST
E. Minimum spanning tree for each edge Connected undirected weighted graph without self-loops and ...
- Codeforces Edu3 E. Minimum spanning tree for each edge
time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...
- CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- MST(Kruskal’s Minimum Spanning Tree Algorithm)
You may refer to the main idea of MST in graph theory. http://en.wikipedia.org/wiki/Minimum_spanning ...
- HDU 4408 Minimum Spanning Tree 最小生成树计数
Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- STP(Spanning Tree Protocol)
STP生成树协议 问题 为了提高网络的可用性,需要进行冗余和备份.但是冗余路径会产生环路 环路会导致以下问题 广播风暴:由于交换机会对广播.多播.和未知目标MAC的单播包进行泛洪,在存在环路的情况 ...
随机推荐
- 【Sort】多种排序
这篇文章包含了插入排序,希尔排序,堆排序,归并排序和快速排序,是前几篇文章的集合. 一共包括三个文件 sort.h sort.cpp main.cpp 1.main.cpp #include < ...
- hdu_5826_physics(物理题)
题目链接:hdu_5826_physics 题意: 给你一些点的速度和初始位置,还有方向,这些速度和加速度满足v*a=c,然后又q个询问,问第t秒第K小的速度是多少 题解: 将物理公式转换为v与t的关 ...
- 8.Hibernate的多对多关联映射
1.创建如下数据库脚本 --1.1 项目表 create table PROJECT ( proid ) not null, proname ) ) ; --1.2 项目表主键 alter table ...
- queue STL
//queue STL //queue is just a container adaptor, which is a class that use other container. //just l ...
- mac 上面安装mysql-python
安装过程中一直报错: EnvironmentError: mysql_config not found 最终下面的方式解决: 58down voteaccepted +200 Ok, well, fi ...
- tftp常用命令
root@hbg:/# tftpBusyBox v1.22.1 (2015-12-18 15:33:52 CST) multi-call binary. Usage: tftp [OPTIONS] H ...
- ZUFE 1035 字符宽度编码(字符串)
Time Limit: 1 Sec Memory Limit: 128 MB Description 你的任务是编写一个程序实现简单的字符宽度编码方法.规则如下:将任何2~9个相同字符的序列编码成2 ...
- B - 小Y上学记——小Y的玩偶
B - 小Y上学记——小Y的玩偶 Time Limit: 2000/1000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others) ...
- DHCP 协议的 8 种消息类型及功能服务器
1) 主机发送 DHCP Discover 广播包在网络上寻找 DHCP 服务器: 单播数据包, 地址. 2) DHCP 服务器向主机发送 DHCP Offer 单播数据包,包含 IP 地址.MAC ...
- 如何通过Maven的Jetty插件运行Web工程
首先建议使用jetty9,因为据官方文档显示,Jetty 7 and Jetty 8 are now EOL (End of Life),如下.但是由于项目使用的版本一般都比较低,这里以jetty8为 ...