感觉此题略难。。。。。。

背包问题。据说有一种二维DP的写法是错的。亲测,背包做法无误。

dp[i][j][k]表示前i个物品,选择j个,差值为k的情况下获得的最大总和

dp[i][j][k]=max(dp[i-1][j][k],dp[i-1][j-1][k-差]+和) 即第i个物品用或者不用。

DP完成之后,在表中寻找一下最优解即可。

#include<cstdio>
#include<cstring>
#include<cmath>
#include<stack>
#include<vector>
#include<string>
#include<iostream>
#include<algorithm>
using namespace std; struct Path
{
// int a,b,c;
int w;
} path[+][+][+];
int dp[+][+][+];
int p[+],d[+];
int n,m;
stack<int>S;
int Z=; int main()
{
int Case=;
while(~scanf("%d%d",&n,&m))
{
if(!n&&!m) break; for(int i=; i<=n; i++) scanf("%d%d",&p[i],&d[i]);
memset(dp,-,sizeof dp);
dp[][][Z]=; for(int i=; i<=n; i++)
for(int j=; j<=m; j++)
for(int k=; k<=*Z; k++)
path[i][j][k].w=-; for(int i=; i<=n; i++)
{
for(int j=; j<=m; j++)
{
for(int k=Z*; k-(p[i]-d[i])>=; k--)
{
if(dp[i-][j][k]!=-)
{
dp[i][j][k]=dp[i-][j][k];
path[i][j][k].w=;
} if(j>=&&dp[i-][j-][k-(p[i]-d[i])]!=-)
{
if(dp[i-][j-][k-(p[i]-d[i])]+p[i]+d[i]>dp[i][j][k])
{
dp[i][j][k]=dp[i-][j-][k-(p[i]-d[i])]+p[i]+d[i];
path[i][j][k].w=;
}
}
}
}
} int posa,posb,posc;
int Max=-;
for(int i=; i<=Z; i++)
{
for(int j=; j<=n; j++)
if(dp[j][m][Z+i]>Max&&path[j][m][Z+i].w==)
Max=dp[j][m][Z+i],posa=j,posb=m,posc=Z+i;
for(int j=; j<=n; j++)
if(dp[j][m][Z-i]>Max&&path[j][m][Z-i].w==)
Max=dp[j][m][Z-i],posa=j,posb=m,posc=Z-i;
if(Max!=-) break;
} while(!S.empty()) S.pop(); int ans1,ans2;
ans1=(posc-Z+dp[posa][posb][posc])/;
ans2=ans1-(posc-Z); while()
{
if(path[posa][posb][posc].w==-) break;
if(path[posa][posb][posc].w!=-)
{
int Newa,Newb,Newc;
if(path[posa][posb][posc].w==)
{
S.push(posa);
Newa=posa-;
Newb=posb-;
Newc=posc-(p[posa]-d[posa]);
}
else
{
Newa=posa-;
Newb=posb;
Newc=posc;
}
posa=Newa;
posb=Newb;
posc=Newc;
}
} printf("Jury #%d\n",Case++);
printf("Best jury has value %d for prosecution and value %d for defence:\n",ans1,ans2);
while(!S.empty())
{
printf(" %d",S.top());
S.pop();
}
printf("\n\n"); }
return ;
}

POJ 1015 Jury Compromise的更多相关文章

  1. 背包系列练习及总结(hud 2602 && hdu 2844 Coins && hdu 2159 && poj 1170 Shopping Offers && hdu 3092 Least common multiple && poj 1015 Jury Compromise)

    作为一个oier,以及大学acm党背包是必不可少的一部分.好久没做背包类动规了.久违地练习下-.- dd__engi的背包九讲:http://love-oriented.com/pack/ 鸣谢htt ...

  2. OpenJudge 2979 陪审团的人选 / Poj 1015 Jury Compromise

    1.链接地址: http://bailian.openjudge.cn/practice/2979 http://poj.org/problem?id=1015 2.题目: 总Time Limit: ...

  3. POJ 1015 Jury Compromise(双塔dp)

    Jury Compromise Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33737   Accepted: 9109 ...

  4. poj 1015 Jury Compromise(背包+方案输出)

    \(Jury Compromise\) \(solution:\) 这道题很有意思,它的状态设得很...奇怪.但是它的数据范围实在是太暴露了.虽然当时还是想了好久好久,出题人设了几个限制(首先要两个的 ...

  5. POJ 1015 Jury Compromise 2个月后重做,其实这是背包题目

    http://poj.org/problem?id=1015 题目大意:在遥远的国家佛罗布尼亚,嫌犯是否有罪,须由陪审团决定.陪审团是由法官从公众中挑选的.先随机挑选n个人作为陪审团的候选人,然后再从 ...

  6. POJ 1015 Jury Compromise dp分组

    第一次做dp分组的问题,百度的~~ http://poj.org/problem?id=1015 题目大意:在遥远的国家佛罗布尼亚,嫌犯是否有罪,须由陪审团决定.陪审团是由法官从公众中挑选的.先随机挑 ...

  7. [Poj 1015] Jury Compromise 解题报告 (完全背包)

    题目链接:http://poj.org/problem?id=1015 题目: 题解: 我们考虑设计DP状态(因为这很显然是一个完全背包问题不是吗?) dp[j][k]表示在外层循环到i时,选了j个人 ...

  8. POJ #1015 - Jury Compromise - TODO: POJ website issue

    (poj.org issue. Not submitted yet) This is a 2D DP problem, very classic too. Since I'm just learnin ...

  9. HDU POJ 1015 Jury Compromise(陪审团的人选,DP)

    题意: 在遥远的国家佛罗布尼亚,嫌犯是否有罪,须由陪审团决定.陪审团是由法官从公众中挑选的.先随机挑选n个人作为陪审团的候选人,然后再从这n个人中选m人组成陪审团.选m人的办法是:控方和辩方会根据对候 ...

随机推荐

  1. 打不开BT,一直重复的关闭开启。

    /bt-btif (25335): ...preload_wait_timeout (retried:0/max-retry:1)...D/bt_userial(25335): RX terminat ...

  2. 转 [分享一个SQL] 查会话阻塞关系,层次关系.

    with ash as (select /*+ materialize*/* from DBA_HIST_ACTIVE_SESS_HISTORY  where sample_time between ...

  3. Windows 常用消息及含义

      消息范围 说明 0 - WM_USER – 1 系统消息 WM_USER - 0x7FFF 自定义窗口类整数消息 WM_APP - 0xBFFF 应用程序自定义消息 0xC000 - 0xFFFF ...

  4. Openlayers 3 热力图

    <body> <div id="map"></div> <script> var map = new ol.Map({ //初始化m ...

  5. UVA 10308 Roads in the North

    input u1 v1 w1 u2 v2 w2 ... un vn wn 1<=vi,ui<=n+1 /n output 距离最远的两个点的距离 做法:一颗全连通且只有一条路从一个顶点到达 ...

  6. 转一篇分析C语言调用时栈的变化的好文

    http://blog.csdn.net/zsy2020314/article/details/9429707

  7. iOS 开发之照片框架详解之二 —— PhotoKit 详解(上)

    转载自:http://kayosite.com/ios-development-and-detail-of-photo-framework-part-two.html 一. 概况 本文接着 iOS 开 ...

  8. jquery 中 $('div','li')

    要搞清楚$('div','li') 和 $('div , li') 和 $('div li') 区别$('div','li')是$(子,父),是从父节点里找子,而不是找li外面的div $('div ...

  9. Dev之ChartControl控件(一)

    ChartControl控件主要包括Chart Title,Legend,Annotations,Diagram,Series五部分:如图: 1.  用RangeControl控件控制ChartCon ...

  10. Base64笔记

    1. 昨天的<MIME笔记>中提到,MIME主要使用两种编码转换方式----Quoted-printable和Base64----将8位的非英语字符转化为7位的ASCII字符. 虽然这样的 ...