Spark核心——RDD
Spark中最核心的概念为RDD(Resilient Distributed DataSets)中文为:弹性分布式数据集,RDD为对分布式内存对象的 抽象它表示一个被分区不可变且能并行操作的数据集;RDD为可序列化的、可缓存到内存对RDD进行操作过后还可以存到内存中,下次操作直接把内存中RDD作为输入,避免了Hadoop MapReduce的大IO操作;
RDD生成
Spark所要处理的任何数据都是存储在RDD之中,目前两种方式可以生成一个RDD:
1、从RDD进行转换操作
2、使用外部存储系统创建,如:HDFS;
RDD操作
RDD支持两种操作:
转换(transformation operation)
转换操作将一个RDD经过操作后返回一个全新的RDD,转换操是lazy(惰性)的这期间不会产生任何数据的计算;
转换函数有:distinct、filter、map、flatMap、union、groupByKey等;
行动(action operation)
每一个行动操作都会触发Spark Job进行计算并返回最终的结果,行动操作有这么几类:返回标量,count返回元素的个数;返回Scala集合,task(n)返回0到n-1组成的集合;写入外部存储,saveAsHadoopFile(path)存储到HDFS;
行动函数有:count、top、task、saveAsHadoopFile等;
RDD为不可变的数据集,可以使用转换操作“修改”一个RDD,但这操作过后返回的是一个全新的RDD 原本RDD并没有改变;

RDD状态转换图
Lineage
Spark RDD只支持粗粒度的操作,对一个RDD的操作都会被作用于该RDD的所有数据;为了保证RDD的高可用性RDD通过使用Lineage(血统)记录了RDD演变流程(从其他RDD到当前RDD所做的操作) 当RDD分区数据丢失时可以通过Lineage的信息重新计算与恢复分区数据,或进行RDD的重建;
RDD的依赖关系(dependencies):
由于对RDD的操作都是粗粒度的一个转换操作过后都会产生一个新的RDD,RDD之间会形成一个前后依赖关系;Spark中存在两种依赖:窄依赖(Narrow Dependencies)、宽依赖(Wide Dependencies);
窄依赖(Narrow Dependencies):一个父RDD的分区只能被一个子RDD的一个分区使用;
宽依赖(Wide Dependencies):多个子RDD的分区依赖于一个父RDD的同一个分区;
窄依赖的节点(RDD)关系如果流水一般,所以当节点失败后只需重新计算父节点的分区即可,宽依赖需要重新计算父节点的多个分区代价是非常昂贵的;

窄依赖Narrow

宽依赖Wide
参考资料:
http://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf
http://spark.apache.org/docs/latest/programming-guide.html
文章首发地址:Solinx
http://www.solinx.co/archives/548
Spark核心——RDD的更多相关文章
- Spark核心—RDD初探
本文目的 最近在使用Spark进行数据清理的相关工作,初次使用Spark时,遇到了一些挑(da)战(ken).感觉需要记录点什么,才对得起自己.下面的内容主要是关于Spark核心-RDD的相关 ...
- Spark核心RDD、什么是RDD、RDD的属性、创建RDD、RDD的依赖以及缓存、
1:什么是Spark的RDD??? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行 ...
- Spark核心RDD:combineByKey函数详解
https://blog.csdn.net/jiangpeng59/article/details/52538254 为什么单独讲解combineByKey? 因为combineByKey是Spark ...
- 1.spark核心RDD特点
RDD(Resilient Distributed Dataset) Spark源码:https://github.com/apache/spark abstract class RDD[T: C ...
- Spark的核心RDD(Resilient Distributed Datasets弹性分布式数据集)
Spark的核心RDD (Resilient Distributed Datasets弹性分布式数据集) 原文链接:http://www.cnblogs.com/yjd_hycf_space/p/7 ...
- Spark之RDD容错原理及四大核心要点
一.Spark RDD容错原理 RDD不同的依赖关系导致Spark对不同的依赖关系有不同的处理方式. 对于宽依赖而言,由于宽依赖实质是指父RDD的一个分区会对应一个子RDD的多个分区,在此情况下出现部 ...
- spark系列-2、Spark 核心数据结构:弹性分布式数据集 RDD
一.RDD(弹性分布式数据集) RDD 是 Spark 最核心的数据结构,RDD(Resilient Distributed Dataset)全称为弹性分布式数据集,是 Spark 对数据的核心抽象, ...
- [Spark] Spark的RDD编程
本篇博客中的操作都在 ./bin/pyspark 中执行. RDD,即弹性分布式数据集(Resilient Distributed Dataset),是Spark对数据的核心抽象.RDD是分布式元素的 ...
- 关于Spark中RDD的设计的一些分析
RDD, Resilient Distributed Dataset,弹性分布式数据集, 是Spark的核心概念. 对于RDD的原理性的知识,可以参阅Resilient Distributed Dat ...
随机推荐
- Android SearchView 自定义SearchIcon和字体颜色大小
自定义SearchView的搜索图标和字体属性相对复杂一些,记下来. 一.自定义SearchIcon 1.API版本低于21:版本小于21时,要修改SearchIcon比较复杂,需要先获取到Searc ...
- salesforce 零基础学习(五十五)java通过SOAP方式定时访问某个文件然后插入到sObject中
项目源码:https://github.com/zhangyueqidlmu/SOAP-Access-SFDC.git 项目背景:salesforce端相关数据需要其他系统提供,其他系统可以提供相关数 ...
- 【WPF】运用MEF实现窗口的动态扩展
若干年前,老周写了几篇有关MEF的烂文,简单地说,MEF是一种动态扩展技术,比如可以指定以某个程序集或某个目录为搜索范围,应用程序在运行时会自动搜索符合条件的类型,并自动完成导入,这样做的好处是,主程 ...
- SpringMVC中定时任务配置
在项目中使用定时任务是常有的事,比如每天定时进行数据同步或者备份等等. 以前在从事C语言开发的时候,定时任务都是通过写个shell脚本,然后添加到linux定时任务中进行调度的. 现在使用Spring ...
- C++服务器开发之基于对象的编程风格
Thread.h #ifndef _THREAD_H_ #define _THREAD_H_ #include <pthread.h> #include <boost/functio ...
- AFNetworking 3.0 源码解读(四)之 AFURLResponseSerialization
本篇是AFNetworking 3.0 源码解读的第四篇了. AFNetworking 3.0 源码解读(一)之 AFNetworkReachabilityManager AFNetworking 3 ...
- 提升用户体验的最佳免费 jQuery 表单插件
网页表单是一个老生常谈的话题.出于这样或那样的目的,一些示例中都会包括用户注册,电子商务结算,用户设置甚至联系人表格.而输入栏是非常容易用现代的CSS3技术来应用样式.但是到底什么决定整体用户体验? ...
- Asp.Net Core 项目实战之权限管理系统(6) 功能管理
0 Asp.Net Core 项目实战之权限管理系统(0) 无中生有 1 Asp.Net Core 项目实战之权限管理系统(1) 使用AdminLTE搭建前端 2 Asp.Net Core 项目实战之 ...
- 使用STM32F4的CCM内存
使用STM32F4的CCM内存http://www.stmcu.org/module/forum/forum.php?mod=viewthread&tid=604814&fromuid ...
- C# Invoke或者BeginInvoke的使用
在Invoke或者BeginInvoke的使用中无一例外地使用了委托Delegate. 一.为什么Control类提供了Invoke和BeginInvoke机制? 关于这个问题的最主要的原因已经是do ...