p1144一元三次方程求解
题目描述:
有形如:f(x)=ax^3+bx^2+cx+d=0这样的一元三次方程,给出该方程中各项的系数a,b,c,d,它们均为实数,并约定该方程一定存在着3个不同的实数解,解的范围在-100至100之间,且解与解之差的绝对值≥1。
现在请你编程,由小到大依次输出这三个实根,并精确到小数点后2位。
输入:
一行4个实数,每两个数之间用1个空格隔开,分别表示a,b,c,d。
1 -5 -4 20
输出:
一行3个实数,分别表示3个实根,每两个之间用1个空格隔开。注意由小到大
-2.00 2.00 5.00
提示:
记方程f(x)=0,若存在2个数x1和x2,且x1<x2,如果f(x1)*f(x2)<0,则在(x1,x2)之间一定有一个解。
所以就直接将解扩大100倍从-100到100进行枚举如果在 i 到 i-1间有f(i)*f(i-1)<0那就说明在i到i-1之间一定有一个解,然后用二分查找解即可。
注意:所有变量都要用double,不然会出错,包括数组的变量。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<iomanip>
using namespace std;
double a,b,c,d;
double f(double x)
{
return(x*x*x*a+x*x*b+x*c+d);
}
double ans[];
double bsearch(double l,double r)
{
if(r-l<=0.001)
return l;
double mid=(l+r)/;
if(f(l)*f(mid)<=)
return bsearch(l,mid);
else
return bsearch(mid,r);
}
int main()
{
cin>>a>>b>>c>>d;
int ci=;
for(int i=-;i<=;i++)
{
double l=i,r=i+;
if(f(l)==)
ans[++ci]=l;
else
{
if(f(l)*f(r)<)
{
ans[++ci]=bsearch(l,r);
}
}
if(ci>=)
break;
}
cout<<setiosflags(ios::fixed)<<setprecision();
cout<<ans[]<<' '<<ans[]<<' '<<ans[]<<endl;
return ;
}
p1144一元三次方程求解的更多相关文章
- NOIP2001 一元三次方程求解
题一 一元三次方程求解(20分) 问题描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范 ...
- Vijos P1116 一元三次方程求解【多解,暴力,二分】
一元三次方程求解 描述 有形如:ax^3+bx^2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之 ...
- [NOIP提高&洛谷P1024]一元三次方程求解 题解(二分答案)
[NOIP提高&洛谷P1024]一元三次方程求解 Description 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约 ...
- 洛谷——P1024 一元三次方程求解
P1024 一元三次方程求解 题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-10 ...
- P1024 一元三次方程求解
P1024 一元三次方程求解 #include<cstdio> #include<iostream> #include<algorithm> using names ...
- 洛谷P1024 一元三次方程求解
P1024 一元三次方程求解 题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-10 ...
- Codevs 1038 一元三次方程求解 NOIP 2001(导数 牛顿迭代)
1038 一元三次方程求解 2001年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver 题目描述 Description 有形如:ax3+b ...
- luogu【P1024 一元三次方程求解】题解
题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差 ...
- NOIP2001 一元三次方程求解[导数+牛顿迭代法]
题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差 ...
随机推荐
- ArcGisServer根据最大最小坐标换算瓦片行列号(转载)
ArcGisServer根据最大最小坐标换算瓦片行列号 1.前言 在上一节中我们知道了屏幕上一像素等于实际中多少单位长度(米或经纬度)的换算方法,而知道这个原理后,接下来我们要怎么用它呢?它和我们前端 ...
- CentOS Linux解决 Device eth0 does not seem to be present
通过OVF部署Linux主机后提示 ringing up interface eth0: Device eth0 does not seem to be present,delaying initi ...
- db2 将原表列notnull属性修改为null属性的方法 (查看主键约束,唯一约束去syscat.tabconst)
好久没机会写点东西了,今天把自己遇到的一个小问题跟大家分享一下如何修改db2数据库表中列的属性--将列的非空属性改为允许空的属性,修改数据表的某一列属性其实很简单但是里面有需要细节需要dba注意,毕竟 ...
- IE6下完美兼容css3圆角和阴影属性的htc插件PIE.htc
1.(推荐:)css插件PIE.htc,这个才是真正完美兼容css3的圆角和阴影属性在IE6环境下使用的效果,但要注意的是:下面的代码必须写在html文件的head标签内,否则无效(不能从外部引用下面 ...
- WCF服务发布到IIS中去 在WCF调试
第一个WCF程序 1. 新建立空白解决方案,并在解决方案中新建项目,项目类型为:WCF服务应用程序.建立完成后如下图所示: 2.删除系统生成的两个文件IService1.cs与Service1.svc ...
- jQuery DataTables and ASP.NET MVC Integration
part 1 : http://www.codeproject.com/Articles/155422/jQuery-DataTables-and-ASP-NET-MVC-Integration-Pa ...
- 用Redis作为Mysql数据库的缓存
看到一篇不错的博文,记录下: http://blog.csdn.net/qtyl1988/article/details/39553339 http://blog.csdn.net/qtyl1988/ ...
- 《深度探索C++对象模型》笔记——Function语意学
member的各种调用方式 C++支持三种类型的member functions:static.nonstatic和virtual. nonstatic member functions会被编译器转换 ...
- Spring Boot启动过程(一)
之前在排查一个线上问题时,不得不仔细跑了很多遍Spring Boot的代码,于是整理一下,我用的是1.4.3.RELEASE. 首先,普通的入口,这没什么好说的,我就随便贴贴代码了: SpringAp ...
- python属性查找(attribute lookup)
在Python中,属性查找(attribute lookup)是比较复杂的,特别是涉及到描述符descriptor的时候. 在上一文章末尾,给出了一段代码,就涉及到descriptor与att ...