正题

题目链接:https://www.luogu.com.cn/problem/T183637


题目大意

给出\(n\)个二元组\((x_i,y_i)\),求最大的

\[|x_i-x_j|\times min\{|y_i|,|y_j|\}
\]

\(1\leq n\leq 2\times 10^6,-10^6\leq x_i\leq 10^6,-10^9\leq y_i\leq 10^9,1\leq T\leq 10\)


解题思路

昨天出去了所以没打比赛,这个算法是那个时候口胡的。

首先时间复杂度显然不能带\(log\),但是注意到\(x\)的范围,这是在告诉我们可以拿\(x\)去排序。

\(x\)排好序之后,我们发现对于一个位置\(j\),我们寻找一个\(i<j\)使得答案最大那么显然\(i\)要在从前往后的单调队列里。

这个其实启示了我们,我们可以前后各维护一个单调栈然后在两个栈里面搞。

至于搞法不难发现决定因素是最小的那个,所以我们每次把小的那个弹出顶部就好了。

时间复杂度\(O(n)\)。

然后交上去\(T\)了好多发,以为是常数的问题,结果换成题解的做法还是\(T\)了。

最后发现快读还不够,要用那个文件的黑科技读入,出题人真有你的


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cctype>
#define ll long long
using namespace std;
const int N=2e6+10;
int T,n,a[N],sp[N],ss[N],tp,ts;
long long ans;
inline char Getchar()
{
static char buf[100000],*p1=buf+100000,*pend=buf+100000;
if(p1==pend)
{
p1=buf; pend=buf+fread(buf,1,100000,stdin);
if (pend==p1) return -1;
}
return *p1++;
}
inline int read()
{
char c;int d=1;int f=0;
while(c=Getchar(),!isdigit(c))if(c==45)d=-1;f=(f<<3)+(f<<1)+c-48;
while(c=Getchar(),isdigit(c)) f=(f<<3)+(f<<1)+c-48;
return d*f;
}
void GetAns(int i,int j)
{ans=max(ans,1ll*(i-j)*min(a[i],a[j]));}
signed main()
{
T=read();
while(T--){
n=read();ans=0;
memset(a,0,sizeof(a));
for(int i=1;i<=n;i++){
int x=read()+1e6,y=read();
a[x]=max(a[x],abs(y));
}
ts=tp=0;
for(int i=0;i<=2e6;i++){
if(!a[i])continue;
while(ts>0&&a[i]>=a[ss[ts]])ts--;
ss[++ts]=i;
}
for(int i=2e6;i>=0;i--){
if(!a[i])continue;
while(tp>0&&a[i]>=a[sp[tp]])tp--;
sp[++tp]=i;
}
int hp=1,hs=1;
while(ts&&tp){
GetAns(ss[ts],sp[tp]);
if(ts>0&&a[ss[ts]]<=a[sp[tp]])ts--;
else tp--;
}
printf("%lld\n",ans);
}
return 0;
}

T183637-变异距离(2021 CoE III C)【单调栈】的更多相关文章

  1. 2016 大连网赛---Function(单调栈)

    题目链接 http://acm.split.hdu.edu.cn/showproblem.php?pid=5875 Problem Description The shorter, the simpl ...

  2. Code Forces Gym 100971D Laying Cables(单调栈)

    D - Laying Cables Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u ...

  3. 洛谷.5300.[GXOI/GZOI2019]与或和(单调栈)

    LOJ BZOJ 洛谷 想了一个奇葩的单调栈,算的时候要在中间取\(\min\),感觉不靠谱不写了=-= 调了十分钟发现输出没取模=v= BZOJ好逗逼啊 题面连pdf都不挂了 哈哈哈哈 枚举每一位. ...

  4. LeetCode Monotone Stack Summary 单调栈小结

    话说博主在写Max Chunks To Make Sorted II这篇帖子的解法四时,写到使用单调栈Monotone Stack的解法时,突然脑中触电一般,想起了之前曾经在此贴LeetCode Al ...

  5. 算法进阶面试题02——BFPRT算法、找出最大/小的K个数、双向队列、生成窗口最大值数组、最大值减最小值小于或等于num的子数组数量、介绍单调栈结构(找出临近的最大数)

    第二课主要介绍第一课余下的BFPRT算法和第二课部分内容 1.BFPRT算法详解与应用 找到第K小或者第K大的数. 普通做法:先通过堆排序然后取,是n*logn的代价. // O(N*logK) pu ...

  6. bzoj4237: 稻草人 cdq分治 单调栈

    目录 题目链接 题解 代码 题目链接 bzoj4237: 稻草人 题解 暴力统计是n^2的 考虑统计一段区间对另一端的贡献 对于y值cdq分治,降调一维 对于当前两个分治区间统计上面那部分对下面那部分 ...

  7. [CF1083D]The Fair Nut’s getting crazy[单调栈+线段树]

    题意 给定一个长度为 \(n\) 的序列 \(\{a_i\}\).你需要从该序列中选出两个非空的子段,这两个子段满足 两个子段非包含关系. 两个子段存在交. 位于两个子段交中的元素在每个子段中只能出现 ...

  8. 【POJ2796】Feel Good 单调栈

    题目大意:给定一个长度为 N 的序列,求任意区间 [ l , r ] 中最小的\(min\{v[i],i\in[l,r] \}*\Sigma_{i=l}^rv[i]\). 题解:这是一道具有标准单调栈 ...

  9. poj 2059 单调栈

    题意:求柱状图中最大矩形面积. 单调栈:顾名思义就是栈内元素单调递增的栈. 每次插入数据来维护这个栈,假设当前须要插入的数据小于栈顶的元素,那就一直弹出栈顶的元素.直到满足当前须要插入的元素大于栈顶元 ...

随机推荐

  1. FastReport.net 绿色破解版winform中使用

    FastReport 是非常有名的报表库,曾经在delphi中经常看到 现在FastReport.net 是.net平台下的实现.它的价格对于个人开发者来说确实非常非常贵 出于学习的目的(0<& ...

  2. AAC简介

    AAC共有9种规格,以适应不同的场合的需要: MPEG-2 AAC LC 低复杂度规格(Low Complexity)--比较简单,没有增益控制,但提高了编码效率,在中等码率的编码效率以及音质方面,都 ...

  3. C# 单元测试,测试资源管理器里面没有需要的单元测试

    已经创建了单元测试,却无法运行,更改引用的程序集,将TestPlatform换位QualityTools.UnitTestFramework.具体原因尚未分析,随笔记录.

  4. 老鼠走迷宫I

    转自:http://blog.csdn.net/holymaple/article/details/8582517 说明:老鼠走迷宫是递回求解的基本提醒,我们在二维阵列中使用2来表示迷宫墙壁,使用1来 ...

  5. LeetCode入门指南 之 栈和队列

    栈 155. 最小栈 设计一个支持 push ,pop ,top 操作,并能在常数时间内检索到最小元素的栈. push(x) -- 将元素 x 推入栈中. pop() -- 删除栈顶的元素. top( ...

  6. springboot中redis取缓存类型转换异常

    异常如下: [dispatcherServlet] in context with path [] threw exception [Request processing failed; nested ...

  7. Linux 自旋锁,互斥量(互斥锁),读写锁

    自旋锁(Spin Lock) 自旋锁类似于互斥量,不过自旋锁不是通过休眠阻塞进程,而是在取得锁之前一直处于忙等待的阻塞状态.这个忙等的阻塞状态,也叫做自旋. 自旋锁通常作为底层原语实现其他类型的锁. ...

  8. 使用spring向service里面注入dao不成功。

    因为原来的程序没有使用spring.后来加spring的时候action有个地方的new没有改!!! new了个新的实现层 不是spring管理的对象.

  9. WebStorm 2018.3.2 激活方式(永久)

    其他版本下载:https://www.jetbrains.com/webstorm/download/other.html 这个适合2018.3.2 第一步:下载补丁包(jar)链接:https:// ...

  10. ubuntu apt-get Failed to fetch Temporary failure resolving 'security.ubuntu.com'

    发现是因为代理设置原因,导致无法上网,设置代理后问题解决. System Setting -> Network -> Network Proxy -> input IP+Port - ...