golang channel原理
channel介绍
channel一个类型管道,通过它可以在goroutine之间发送和接收消息。它是Golang在语言层面提供的goroutine间的通信方式。
众所周知,Go依赖于称为CSP(Communicating Sequential Processes)的并发模型,通过Channel实现这种同步模式。Go并发的核心哲学是不要通过共享内存进行通信; 相反,通过沟通分享记忆。
下面以简单的示例来演示Go如何通过channel来实现通信。
package main
import (
"fmt"
"time"
)
func goRoutineA(a <-chan int) {
val := <-a
fmt.Println("goRoutineA received the data", val)
}
func goRoutineB(b chan int) {
val := <-b
fmt.Println("goRoutineB received the data", val)
}
func main() {
ch := make(chan int, 3)
go goRoutineA(ch)
go goRoutineB(ch)
ch <- 3
time.Sleep(time.Second * 1)
}
结果为:goRoutineA received the data 3
上面只是个简单的例子,只输出goRoutineA ,没有执行goRoutineB,说明channel仅允许被一个goroutine读写。
go并发知识:链接
说道channel这里不得不提通道的结构hchan。
hchan
源代码在src/runtime/chan.go
type hchan struct {
qcount uint // total data in the queue
dataqsiz uint // size of the circular queue
buf unsafe.Pointer // points to an array of dataqsiz elements
elemsize uint16
closed uint32
elemtype *_type // element type
sendx uint // send index
recvx uint // receive index
recvq waitq // list of recv waiters
sendq waitq // list of send waiters
// lock protects all fields in hchan, as well as several
// fields in sudogs blocked on this channel.
//
// Do not change another G's status while holding this lock
// (in particular, do not ready a G), as this can deadlock
// with stack shrinking.
lock mutex
}
type waitq struct {
first *sudog
last *sudog
}
说明:
- qcount uint // 当前队列中剩余元素个数
- dataqsiz uint // 环形队列长度,即缓冲区的大小,即make(chan T,N),N.
- buf unsafe.Pointer // 环形队列指针
- elemsize uint16 // 每个元素的大小
- closed uint32 // 表示当前通道是否处于关闭状态。创建通道后,该字段设置为0,即通道打开; 通过调用close将其设置为1,通道关闭。
- elemtype *_type // 元素类型,用于数据传递过程中的赋值;
- sendx uint和recvx uint是环形缓冲区的状态字段,它指示缓冲区的当前索引 - 支持数组,它可以从中发送数据和接收数据。
- recvq waitq // 等待读消息的goroutine队列
- sendq waitq // 等待写消息的goroutine队列
- lock mutex // 互斥锁,为每个读写操作锁定通道,因为发送和接收必须是互斥操作。
这里sudog代表goroutine。
make chan
make函数在创建channel的时候会在该进程的heap区申请一块内存,创建一个hchan结构体,返回执行该内存的指针,所以获取的的ch变量本身就是一个指针,在函数之间传递的时候是同一个channel。
hchan结构体使用一个环形队列来保存groutine之间传递的数据(如果是缓存channel的话),使用两个list保存像该chan发送和从该chan接收数据的goroutine,还有一个mutex来保证操作这些结构的安全。
创建channel 有两种,一种是带缓冲的channel,一种是不带缓冲的channel
// 带缓冲
ch := make(chan Task, 3)
// 不带缓冲
ch := make(chan int)
这里我们先讨论带缓冲
ch := make(chan int, 3)
创建通道后的缓冲通道结构
hchan struct {
qcount uint : 0
dataqsiz uint : 3
buf unsafe.Pointer : 0xc00007e0e0
elemsize uint16 : 8
closed uint32 : 0
elemtype *runtime._type : &{
size:8
ptrdata:0
hash:4149441018
tflag:7
align:8
fieldalign:8
kind:130
alg:0x55cdf0
gcdata:0x4d61b4
str:1055
ptrToThis:45152
}
sendx uint : 0
recvx uint : 0
recvq runtime.waitq :
{first:<nil> last:<nil>}
sendq runtime.waitq :
{first:<nil> last:<nil>}
lock runtime.mutex :
{key:0}
}
源代码
func makechan(t *chantype, size int) *hchan {
elem := t.elem
...
}
如果我们创建一个带buffer的channel,底层的数据模型如下图:

发送和接受数据
向channel发送和从channel接收数据主要涉及hchan里的四个成员变量,借用Kavya ppt里的图示,来分析发送和接收的过程。

向channel写入数据
ch <- 3
底层hchan数据流程如图


发送操作概要
1、锁定整个通道结构。
2、确定写入。尝试recvq从等待队列中等待goroutine,然后将元素直接写入goroutine。
3、如果recvq为Empty,则确定缓冲区是否可用。如果可用,从当前goroutine复制数据到缓冲区。
4、如果缓冲区已满,则要写入的元素将保存在当前正在执行的goroutine的结构中,并且当前goroutine将在sendq中排队并从运行时挂起。
5、写入完成释放锁。
这里我们要注意几个属性buf、sendx、lock的变化。
流程图

从channel读取操作
几乎和写入操作相同
代码
func goRoutineA(a <-chan int) {
val := <-a
fmt.Println("goRoutineA received the data", val)
}
底层hchan数据流程如图


这里我们要注意几个属性buf、sendx、recvx、lock的变化。
读取操作概要
- 先获取channel全局锁
- 尝试sendq从等待队列中获取等待的goroutine,
- 如有等待的goroutine,没有缓冲区,取出goroutine并读取数据,然后唤醒这个goroutine,结束读取释放锁。
- 如有等待的goroutine,且有缓冲区(此时缓冲区已满),从缓冲区队首取出数据,再从sendq取出一个goroutine,将goroutine中的数据存入buf队尾,结束读取释放锁。
- 如没有等待的goroutine,且缓冲区有数据,直接读取缓冲区数据,结束读取释放锁。
- 如没有等待的goroutine,且没有缓冲区或缓冲区为空,将当前的goroutine加入recvq排队,进入睡眠,等待被写goroutine唤醒。结束读取释放锁。
流程图

recvq和sendq 结构
recvq和sendq基本上是链表,看起来基本如下

Goroutine Pause/Resume
goroutine是Golang实现的用户空间的轻量级的线程,有runtime调度器调度,与操作系统的thread有多对一的关系,相关的数据结构如下图:

其中M是操作系统的线程,G是用户启动的goroutine,P是与调度相关的context,每个M都拥有一个P,P维护了一个能够运行的goutine队列,用于该线程执行。
当G1向buf已经满了的ch发送数据的时候,当runtine检测到对应的hchan的buf已经满了,会通知调度器,调度器会将G1的状态设置为waiting, 移除与线程M的联系,然后从P的runqueue中选择一个goroutine在线程M中执行,此时G1就是阻塞状态,但是不是操作系统的线程阻塞,所以这个时候只用消耗少量的资源。
那么G1设置为waiting状态后去哪了?怎们去resume呢?我们再回到hchan结构体,注意到hchan有个sendq的成员,其类型是waitq,查看源码如下:
type hchan struct {
...
recvq waitq // list of recv waiters
sendq waitq // list of send waiters
...
}
//
type waitq struct {
first *sudog
last *sudog
}
实际上,当G1变为waiting状态后,会创建一个代表自己的sudog的结构,然后放到sendq这个list中,sudog结构中保存了channel相关的变量的指针(如果该Goroutine是sender,那么保存的是待发送数据的变量的地址,如果是receiver则为接收数据的变量的地址,之所以是地址,前面我们提到在传输数据的时候使用的是copy的方式)

当G2从ch中接收一个数据时,会通知调度器,设置G1的状态为runnable,然后将加入P的runqueue里,等待线程执行.

wait empty channel
前面我们是假设G1先运行,如果G2先运行会怎么样呢?如果G2先运行,那么G2会从一个empty的channel里取数据,这个时候G2就会阻塞,和前面介绍的G1阻塞一样,G2也会创建一个sudog结构体,保存接收数据的变量的地址,但是该sudog结构体是放到了recvq列表里,当G1向ch发送数据的时候,runtime并没有对hchan结构体题的buf进行加锁,而是直接将G1里的发送到ch的数据copy到了G2 sudog里对应的elem指向的内存地址!

select
select就是用来监听和channel有关的IO操作,当 IO 操作发生时,触发相应的动作。
一个简单的示例如下
package main
import (
"fmt"
"time"
)
func goRoutineD(ch chan int, i int) {
time.Sleep(time.Second * 3)
ch <- i
}
func goRoutineE(chs chan string, i string) {
time.Sleep(time.Second * 3)
chs <- i
}
func main() {
ch := make(chan int, 5)
chs := make(chan string, 5)
go goRoutineD(ch, 5)
go goRoutineE(chs, "ok")
select {
case msg := <-ch:
fmt.Println(" received the data ", msg)
case msgs := <-chs:
fmt.Println(" received the data ", msgs)
default:
fmt.Println("no data received ")
time.Sleep(time.Second * 1)
}
}
运行程序,因为当前时间没有到3s,所以select 选择defult
no data received
修改程序,我们注释掉default,并多执行几次结果为
received the data 5
received the data ok
received the data ok
received the data ok
select语句会阻塞,直到监测到一个可以执行的IO操作为止,而这里goRoutineD和goRoutineE睡眠时间是相同的,都是3s,从输出可看出,从channel中读出数据的顺序是随机的。
再修改代码,goRoutineD睡眠时间改成4s
func goRoutineD(ch chan int, i int) {
time.Sleep(time.Second * 4)
ch <- i
}
此时会先执行goRoutineE,select 选择case msgs := <-chs。
range
可以持续从channel读取数据,一直到channel被关闭,当channel中没有数据时会阻塞当前goroutine,与读channel时阻塞处理机制一样。
package main
import (
"fmt"
"time"
)
func goRoutineD(ch chan int, i int) {
for i := 1; i <= 5; i++{
ch <- i
}
}
func chanRange(chanName chan int) {
for e := range chanName {
fmt.Printf("Get element from chan: %d\n", e)
if len(chanName) <= 0 { // 如果现有数据量为0,跳出循环
break
}
}
}
func main() {
ch := make(chan int, 5)
go goRoutineD(ch, 5)
chanRange(ch)
}
结果:
Get element from chan: 1
Get element from chan: 2
Get element from chan: 3
Get element from chan: 4
Get element from chan: 5
死锁(deadlock)
指两个或两个以上的协程的执行过程中,由于竞争资源或由于彼此通信而造成的一种阻塞的现象。
在非缓冲信道若发生只流入不流出,或只流出不流入,就会发生死锁。
下面是一些死锁的例子
1、
package main
func main() {
ch := make(chan int)
ch <- 3
}
上面情况,向非缓冲通道写数据会发生阻塞,导致死锁。解决办法创建缓冲区 ch := make(chan int,3)
2、
package main
import (
"fmt"
)
func main() {
ch := make(chan int)
fmt.Println(<-ch)
}
向非缓冲通道读取数据会发生阻塞,导致死锁。 解决办法开启缓冲区,先向channel写入数据。
3、
package main
func main() {
ch := make(chan int, 3)
ch <- 3
ch <- 4
ch <- 5
ch <- 6
}
写入数据超过缓冲区数量也会发生死锁。解决办法将写入数据取走。
死锁的情况有很多这里不再赘述。
还有一种情况,向关闭的channel写入数据,不会产生死锁,产生panic。
package main
func main() {
ch := make(chan int, 3)
ch <- 1
close(ch)
ch <- 2
}
解决办法别向关闭的channel写入数据。
参考文章
golang channel原理的更多相关文章
- golang channel的使用以及调度原理
golang channel的使用以及调度原理 为了并发的goroutines之间的通讯,golang使用了管道channel. 可以通过一个goroutines向channel发送数据,然后从另一个 ...
- golang channel关闭后,是否可以读取剩余的数据
golang channel关闭后,其中剩余的数据,是可以继续读取的. 请看下面的测试例子. 创建一个带有缓冲的channel,向channel中发送数据,然后关闭channel,最后,从channe ...
- go channel原理及使用场景
转载自:go channel原理及使用场景 源码解析 type hchan struct { qcount uint // Channel 中的元素个数 dataqsiz uint // Channe ...
- golang channel 源码剖析
channel 在 golang 中是一个非常重要的特性,它为我们提供了一个并发模型.对比锁,通过 chan 在多个 goroutine 之间完成数据交互,可以让代码更简洁.更容易实现.更不容易出错. ...
- golang channel详解和协程优雅退出
非缓冲chan,读写对称 非缓冲channel,要求一端读取,一端写入.channel大小为零,所以读写操作一定要匹配. func main() { nochan := make(chan int) ...
- golang channel 用法转的
一.Golang并发基础理论 Golang在并发设计方面参考了C.A.R Hoare的CSP,即Communicating Sequential Processes并发模型理论.但就像John Gra ...
- golang channel初次接触
goroutine之间的同步 goroutine是golang中在语言级别实现的轻量级线程,仅仅利用go就能立刻起一个新线程.多线程会引入线程之间的同步问题,经典的同步问题如生产者-消费者问题,在c, ...
- 如何优雅的关闭Golang Channel?
Channel关闭原则 不要在消费端关闭channel,不要在有多个并行的生产者时对channel执行关闭操作. 也就是说应该只在[唯一的或者最后唯一剩下]的生产者协程中关闭channel,来通知消费 ...
- Golang GC原理
一.内存泄漏 内存泄露,是从操作系统的角度上来阐述的,形象的比喻就是“操作系统可提供给所有进程的存储空间(虚拟内存空间)正在被某个进程榨干”,导致的原因就是程序在运行的时候,会不断地动态开辟的存储空间 ...
随机推荐
- QLabel的使用
现在学习一个简单的控件Label. 第一步:打开designer.exe.拖动一个控件到主窗口,双击可以编辑文字. 第二步:设置字体大小 第三步:设置文字颜色 第四步:设置背景色 第五步:将文字居中 ...
- sql注入之类型及提交注入
#参数类型 这里说的参数是源码中存在注入的地方. 其中参数类型有:数字.字符.搜索.json等. 其中sql语句干扰符号有:',",%,),}等,过滤首先考虑闭合这些符号,再进行注入测试. ...
- jvm源码解读--16 锁_开头
现在不太清楚, public static void main(String[] args) { Object object=new Object(); System.out.println(&quo ...
- 右键发送 (sendto),创建快捷方式到自定义的位置,不仅仅是复制,就像 发送到 桌面快捷方式 一样
TL;DR 在 SendTo 文件夹里加上一文件夹的快捷方式后,在右键发送到这个文件夹的是这些文件的一个副本,实际上是一个复制的过程,有时候我们只希望是快捷方式,那就得另想办法了. 方案如下: 创建一 ...
- Qt+腾讯IM开发笔记(一):腾讯IM介绍、使用和Qt集成腾讯IM-SDK的工程模板Demo
前言 开发一个支持全国的IM聊天,可以有基本的功能,发送文本.图片.文件等等相关内容. 腾讯IM产品 概述 腾讯即时通信IM是腾讯推出的即时聊天程序,当前时间为2020年3月(腾讯IM的优 ...
- 微软内推常见问题 Q&A
很高兴,已经成功内推 59 人拿到了微软 offer! 两年前,我就已经写过一篇微软面经,帮助到了不少人: 微软面经分享:如何更好地做好面试准备 在这两年的内推过程中,往往会有不少候选人来问我有关微软 ...
- dhanush
一.信息收集 ip.端口.指纹 目录扫描 查看frp文件 密码破解 失败换一个 https://github.com/truongkma/ctf-tools/blob/master/John/run/ ...
- Scrapy入门到放弃04:下载器中间件,让爬虫更完美
前言 MiddleWare,顾名思义,中间件.主要处理请求(例如添加代理IP.添加请求头等)和处理响应 本篇文章主要讲述下载器中间件的概念,以及如何使用中间件和自定义中间件. MiddleWare分类 ...
- QT 如何在调试时能进入源码方式(MacOS)
最近在学习QT, 遇到一些crash, 也没看过QT源码啊, 就想类似Java一样, 在出错时进入源码跟踪一下, 但是QT和Java太不一样了, 死活进不去. 研究了几天, 发现本来是很简单的事情, ...
- 2020年度钻石C++C学习笔记(2)--《博学谷》
2020年度钻石C++C--<博学谷> 1.以下标示符中命名合法的是A A.__A__ B.ab.c C.@rp D.2Y_ 2.设 a 和 b 均为 double 型变量,且a=5.5. ...