1. 首先理解L^2(R)的概念

  L^2(R) 是一个内积空间的概念,表示两个无限长的向量做内积,张成的空间问题。也就是两个函数分别作为一个向量,这两个函数要是平方可积的。L^2(a,b)=<f(x)|g(x)>= ∫g(x)f(x)dx| x=a:b  < +∞ [前提: ∫||f(x)||dx| x=a:b  < +∞ 和∫||g(x)||dx| x=a:b  < +∞]

  当<f(x)|g(x)> - f(x) < ε 时,可以默认为 在内积空间内<f(x)|g(x)>向量内积的值非常近似与f(x),通过这个性质,使用无数个正交的向量张成的空间的正交基向量的坐标值来表示f(x),即f(x) = ∑cn*[基向量], 可用cn= <f(x)|基向量>/<基向量|基向量>求得Cn.

2. Haar小波

  尺度函数:是一组正交基

  哈尔小波:是一组正交基

3. Haar小波分解

  f(t)j 属于Vj空间,即分辨率为1/2^j的空间

  f(t)j = V0 + W0+ W1 +W2+ ... + Wj-1

4. 降采样与升采样

  (待更新)

5. 重构

  (待更新)

参考文章:

1. 小波分析完美教程经典 - 小波与小波变换- 林福宗 清华大学计算机与技术系 智能技术与系统国家重点实验室

2. 小波与傅里叶分析基础(第二版)- A First Course in Wavelets with Fourier Anaysis - Albert Boggess Freancis J.Narcowich

3. Youtube - Haar Wavelets - Lorenzo Sadun - https://www.youtube.com/watch?v=cQ5cCKtOBGY&t=3s

4. Youtube - 小波 wavelet  - junchen fenghttps://www.youtube.com/watch?v=it1QClrSa_A

Haar小波的理解的更多相关文章

  1. 图像算法五:【图像小波变换】多分辨率重构、Gabor滤波器、Haar小波

    原 https://blog.csdn.net/alwaystry/article/details/52756051 图像算法五:[图像小波变换]多分辨率重构.Gabor滤波器.Haar小波 2018 ...

  2. HAAR小波

    HAAR小波分解信号或图像的“平滑”部分和“变化”部分(也许所有小波都这样?). 比如信号[1 2 3 4 5 6 7 8] 分解后(不考虑系数): [1.5 3.5 5.5 7.5]         ...

  3. dennis gabor 从傅里叶(Fourier)变换到伽柏(Gabor)变换再到小波(Wavelet)变换(转载)

    dennis gabor 题目:从傅里叶(Fourier)变换到伽柏(Gabor)变换再到小波(Wavelet)变换 本文是边学习边总结和摘抄各参考文献内容而成的,是一篇综述性入门文档,重点在于梳理傅 ...

  4. 小波学习之一(单层一维离散小波变换DWT的Mallat算法C++和MATLAB实现) ---转载

      1 Mallat算法 离散序列的Mallat算法分解公式如下: 其中,H(n).G(n)分别表示所选取的小波函数对应的低通和高通滤波器的抽头系数序列. 从Mallat算法的分解原理可知,分解后的序 ...

  5. 【转】小波与小波包、小波包分解与信号重构、小波包能量特征提取 暨 小波包分解后实现按频率大小分布重新排列(Matlab 程序详解)

    转:https://blog.csdn.net/cqfdcw/article/details/84995904 小波与小波包.小波包分解与信号重构.小波包能量特征提取   (Matlab 程序详解) ...

  6. 小波神经网络(WNN)

    人工神经网络(ANN) 是对人脑若干基本特性通过数学方法进行的抽象和模拟,是一种模仿人脑结构及其功能的非线性信息处理系统. 具有较强的非线性逼近功能和自学习.自适应.并行处理的特点,具有良好的容错能力 ...

  7. 小波变换——哈尔小波,Haar

    哈尔小波转换是于1909年由Alfréd Haar所提出,是小波变换(Wavelet transform)中最简单的一种变换,也是最早提出的小波变换. Alfréd Haar,1885~1933,匈牙 ...

  8. 完全搞懂傅里叶变换和小波(1)——总纲<转载>

    无论是学习信号处理,还是做图像.音视频处理方面的研究,你永远避不开的一个内容,就是傅里叶变换和小波.但是这两个东西其实并不容易弄懂,或者说其实是非常抽象和晦涩的! 完全搞懂傅里叶变换和小波,你至少需要 ...

  9. 二维离散平稳小波重构iswt2

    clc,clear all,close all; load woman; [cA,cH,cV,cD]=swt2(X,2,'haar');%用haar小波基进行2尺度平稳小波分解 Y=iswt2(cA, ...

随机推荐

  1. FastAPI(39)- 使用 CORS 解决跨域问题

    同源策略 https://www.cnblogs.com/poloyy/p/15345184.html CORS https://www.cnblogs.com/poloyy/p/15345871.h ...

  2. AOJ/高等排序习题集

    ALDS1_5_B-MergeSort. Description: Write a program of a Merge Sort algorithm implemented by the follo ...

  3. java 从零开始手写 RPC (01) 基于 websocket 实现

    RPC 解决的问题 RPC 主要是为了解决的两个问题: 解决分布式系统中,服务之间的调用问题. 远程调用时,要能够像本地调用一样方便,让调用者感知不到远程调用的逻辑. 这一节我们来学习下如何基于 we ...

  4. 5.2 MySQL备份工具

    物理备份: 冷备份:cp tar 逻辑备份: mysqldump mysqldump:是MySQL的客户端命令,通过mysql协议连接至mysql服务器进行备份 -A, --all-databases ...

  5. node-pre-gyp以及node-gyp的源码简单解析(以安装sqlite3为例)

    title: node-pre-gyp以及node-gyp的源码简单解析(以安装sqlite3为例) date: 2020-11-27 tags: node native sqlite3 前言 简单来 ...

  6. java 从零开始手写 RPC (07)-timeout 超时处理

    <过时不候> 最漫长的莫过于等待 我们不可能永远等一个人 就像请求 永远等待响应 超时处理 java 从零开始手写 RPC (01) 基于 socket 实现 java 从零开始手写 RP ...

  7. web_security学习路线

    一.了解黑客是如何工作的 1.在虚拟机配置Linux系统 2.漏洞测试工具 3.msf控制台 4.远程工具RATS 5.远程访问计算机 6.白帽 二.技术基础 漏斗扫描工具AWVS AWVS简介 安装 ...

  8. CF49E Common ancestor(dp+dp+dp)

    纪念卡常把自己卡死的一次自闭模拟赛 QWQ 一开始看这个题,以为是个图论,仔细一想,貌似可以直接dp啊. 首先,因为规则只有从两个变为1个,貌似可以用类似区间\(dp\)的方式来\(check\)一段 ...

  9. 试题 历届试题 核桃的数量 java题解

    资源限制 时间限制:1.0s   内存限制:256.0MB 问题描述 小张是软件项目经理,他带领3个开发组.工期紧,今天都在加班呢.为鼓舞士气,小张打算给每个组发一袋核桃(据传言能补脑).他的要求是: ...

  10. python中的 * 和 ** 作用含义

    python中的 * 和 ** ,能够让函数支持任意数量的参数,它们在函数定义和调用中,有着不同的目的 一. 打包参数 * 的作用:在函数定义中,收集所有位置参数到一个新的元组,并将整个元组赋值给变量 ...