1. 首先理解L^2(R)的概念

  L^2(R) 是一个内积空间的概念,表示两个无限长的向量做内积,张成的空间问题。也就是两个函数分别作为一个向量,这两个函数要是平方可积的。L^2(a,b)=<f(x)|g(x)>= ∫g(x)f(x)dx| x=a:b  < +∞ [前提: ∫||f(x)||dx| x=a:b  < +∞ 和∫||g(x)||dx| x=a:b  < +∞]

  当<f(x)|g(x)> - f(x) < ε 时,可以默认为 在内积空间内<f(x)|g(x)>向量内积的值非常近似与f(x),通过这个性质,使用无数个正交的向量张成的空间的正交基向量的坐标值来表示f(x),即f(x) = ∑cn*[基向量], 可用cn= <f(x)|基向量>/<基向量|基向量>求得Cn.

2. Haar小波

  尺度函数:是一组正交基

  哈尔小波:是一组正交基

3. Haar小波分解

  f(t)j 属于Vj空间,即分辨率为1/2^j的空间

  f(t)j = V0 + W0+ W1 +W2+ ... + Wj-1

4. 降采样与升采样

  (待更新)

5. 重构

  (待更新)

参考文章:

1. 小波分析完美教程经典 - 小波与小波变换- 林福宗 清华大学计算机与技术系 智能技术与系统国家重点实验室

2. 小波与傅里叶分析基础(第二版)- A First Course in Wavelets with Fourier Anaysis - Albert Boggess Freancis J.Narcowich

3. Youtube - Haar Wavelets - Lorenzo Sadun - https://www.youtube.com/watch?v=cQ5cCKtOBGY&t=3s

4. Youtube - 小波 wavelet  - junchen fenghttps://www.youtube.com/watch?v=it1QClrSa_A

Haar小波的理解的更多相关文章

  1. 图像算法五:【图像小波变换】多分辨率重构、Gabor滤波器、Haar小波

    原 https://blog.csdn.net/alwaystry/article/details/52756051 图像算法五:[图像小波变换]多分辨率重构.Gabor滤波器.Haar小波 2018 ...

  2. HAAR小波

    HAAR小波分解信号或图像的“平滑”部分和“变化”部分(也许所有小波都这样?). 比如信号[1 2 3 4 5 6 7 8] 分解后(不考虑系数): [1.5 3.5 5.5 7.5]         ...

  3. dennis gabor 从傅里叶(Fourier)变换到伽柏(Gabor)变换再到小波(Wavelet)变换(转载)

    dennis gabor 题目:从傅里叶(Fourier)变换到伽柏(Gabor)变换再到小波(Wavelet)变换 本文是边学习边总结和摘抄各参考文献内容而成的,是一篇综述性入门文档,重点在于梳理傅 ...

  4. 小波学习之一(单层一维离散小波变换DWT的Mallat算法C++和MATLAB实现) ---转载

      1 Mallat算法 离散序列的Mallat算法分解公式如下: 其中,H(n).G(n)分别表示所选取的小波函数对应的低通和高通滤波器的抽头系数序列. 从Mallat算法的分解原理可知,分解后的序 ...

  5. 【转】小波与小波包、小波包分解与信号重构、小波包能量特征提取 暨 小波包分解后实现按频率大小分布重新排列(Matlab 程序详解)

    转:https://blog.csdn.net/cqfdcw/article/details/84995904 小波与小波包.小波包分解与信号重构.小波包能量特征提取   (Matlab 程序详解) ...

  6. 小波神经网络(WNN)

    人工神经网络(ANN) 是对人脑若干基本特性通过数学方法进行的抽象和模拟,是一种模仿人脑结构及其功能的非线性信息处理系统. 具有较强的非线性逼近功能和自学习.自适应.并行处理的特点,具有良好的容错能力 ...

  7. 小波变换——哈尔小波,Haar

    哈尔小波转换是于1909年由Alfréd Haar所提出,是小波变换(Wavelet transform)中最简单的一种变换,也是最早提出的小波变换. Alfréd Haar,1885~1933,匈牙 ...

  8. 完全搞懂傅里叶变换和小波(1)——总纲<转载>

    无论是学习信号处理,还是做图像.音视频处理方面的研究,你永远避不开的一个内容,就是傅里叶变换和小波.但是这两个东西其实并不容易弄懂,或者说其实是非常抽象和晦涩的! 完全搞懂傅里叶变换和小波,你至少需要 ...

  9. 二维离散平稳小波重构iswt2

    clc,clear all,close all; load woman; [cA,cH,cV,cD]=swt2(X,2,'haar');%用haar小波基进行2尺度平稳小波分解 Y=iswt2(cA, ...

随机推荐

  1. Shell系列(3)- 命令别名

    前言 使用alias命令创建命令别名,是Bash的一个基本功能:别名有两种形式,一种暂时的,Linux重启后失效.另外一种永久的通过该配置文件实现 使用更改别名 临时 命令格式:alias 别名='原 ...

  2. javascript 自定义事件 发布-订阅 模式 Event

    * javascript自定义事件 var myEvent = document.createEvent("Event"); myEvent.initEvent("myE ...

  3. 直接取PHP二维数组里面的值

    具体是这样的,如下一个二维数组,是从库中读取出来的. $user = array( 0 => array( 'id'    => 1, 'name'  => '张三', 'email ...

  4. vm 将宿主机文件夹 映射至 虚拟机

    一.关于centos如何安装(自行百度) 二.设置共享文件夹 添加共享文件夹(关闭虚拟机时操作) 虚拟机->设置->选项->共享文件夹 三.安装vm-tools (请用root用户执 ...

  5. P6222-「P6156 简单题」加强版【莫比乌斯反演】

    正题 题目链接:https://www.luogu.com.cn/problem/P6222 题目大意 给出\(k\),\(T\)组询问给出\(n\)求 \[\sum_{i=1}^n\sum_{j=1 ...

  6. 如何基于Security实现OIDC单点登录?

    一.说明 本文主要是给大家介绍 OIDC 的核心概念以及如何通过对 Spring Security 的授权码模式进行扩展来实现 OIDC 的单点登录. OIDC 是 OpenID Connect 的简 ...

  7. 解决springboot 配置文件未映射静态资源文件 导致shiro拦截静态资源的问题

    ---------------------------------------------------------------------------------------------------- ...

  8. 前端规范之Git工作流规范(Husky + Comminilint + Lint-staged)

    代码规范是软件开发领域经久不衰的话题,几乎所有工程师在开发过程中都会遇到或思考过这一问题.而随着前端应用的大型化和复杂化,越来越多的前端团队也开始重视代码规范.同样,前段时间,笔者所在的团队也开展了一 ...

  9. 从一个舒服的姿势插入 HttpClient 拦截器技能点

    马甲哥继续写一点大前端,阅读耗时5 minute,行文耗时5 Days 今天我们来了解一下如何拦截axios请求/响应? 这次我们举一反三,用一个最舒适的姿势插入这个技能点. axios是一个基于 p ...

  10. PHP审计之PHP反序列化漏洞

    PHP审计之PHP反序列化漏洞 前言 一直不懂,PHP反序列化感觉上比Java的反序列化难上不少.但归根结底还是serialize和unserialize中的一些问题. 在此不做多的介绍. 魔术方法 ...