Foret P., Kleiner A., Mobahi H., Neyshabur B. Sharpness-aware minimization for efficiently improving generalization. In International Conference on Learning Representations.

在训练的时候对权重加扰动能增强泛化性.

主要内容

如上图所示, 一般的训练方法虽然能够收敛到一个不错的局部最优点, 但是往往这个局部最优点附近是非常不光滑的, 即对权重\(w\)添加微小的扰动\(w+\epsilon\) 可能就会导致不好的结果, 作者认为这与模型的泛化性有很大关系(实际上已有别的文章提出这一观点).

作者给出如下的理论分析:

在满足一定条件下有

\[L_{\mathscr{D}} (w) \le \max_{\|\epsilon \|_2 \le \rho} L_{\mathcal{S}} (w + \epsilon) + h(\|w\|_2^2/\rho^2).
\]

其中\(h\)是一个严格单调递增函数, \(L_{\mathcal{S}}\)是在训练集\(\mathcal{S}\)上的损失,

\[L_{\mathscr{D}}(w) = \mathbb{E}_{(x, y) \sim \mathscr{D}} [l(x, y;w)].
\]

如果把\(h(\|w\|_2^2/\rho^2)\)看成\(\lambda \|w\|_2^2\)(即常用的weight decay), 我们的目标函数可以认为是

\[\min_w L_{\mathcal{S}}^{SAM} (w) + \lambda \|w\|_2^2,
\]
\[L_{\mathcal{S}}^{SAM}(w) := \max_{\|\epsilon \|_p \le \rho} L_{\mathcal{S}} (w + \epsilon),
\]

注: 这里\(\|\cdot \|_p\)而并不仅限于\(\|\cdot \|_2\).

采用近似的方法求解上面的问题(就和对抗样本一样):

\[\epsilon^* (w)
:= \mathop{\arg \max} \limits_{\|\epsilon\|_p\le \rho} L_{\mathcal{S}}(w + \epsilon)
\approx \mathop{\arg \max} \limits_{\|\epsilon\|_p\le \rho} L_{\mathcal{S}}(w) + \epsilon^T \nabla_w L_{\mathcal{S}}(w)
= \mathop{\arg \max} \limits_{\|\epsilon\|_p\le \rho} \epsilon^T \nabla_w L_{\mathcal{S}}(w).
\]

就是一个对偶范数的问题.

虽然\(\epsilon^*(w)\)实际上是和\(w\)有关的, 但是在实际中只是当初普通的量带入, 这样就不用计算二阶导数了, 即

\[\nabla_w L_{\mathcal{S}}^{SAM}(w) \approx \nabla_w L_{\mathcal{S}}(w) |_{w + \hat{\epsilon}(w)}.
\]

实验结果非常好, 不仅能够提高普通的正确率, 在标签受到污染的情况下也能有很好的鲁棒性.

代码

原文代码

Sharpness-Aware Minimization for Efficiently Improving Generalization的更多相关文章

  1. CVPR 2020 全部论文 分类汇总和打包下载

    CVPR 2020 共收录 1470篇文章,根据当前的公布情况,人工智能学社整理了以下约100篇,分享给读者. 代码开源情况:详见每篇注释,当前共15篇开源.(持续更新中,可关注了解). 算法主要领域 ...

  2. CVPR 2020论文收藏(转知乎:https://zhuanlan.zhihu.com/p/112337176)

    CVPR 2020 共收录 1470篇文章,根据当前的公布情况,人工智能学社整理了以下约100篇,分享给读者. 代码开源情况:详见每篇注释,当前共15篇开源.(持续更新中,可关注了解). 算法主要领域 ...

  3. 最优化方法系列:Adam+SGD—>AMSGrad

    自动调参的Adam方法已经非常给力了,不过这主要流行于工程界,在大多数科学实验室中,模型调参依然使用了传统的SGD方法,在SGD基础上增加各类学习率的主动控制,以达到对复杂模型的精细调参,以达到刷出最 ...

  4. Paper | Toward Convolutional Blind Denoising of Real Photographs

    目录 故事背景 建模现实噪声 CBDNet 非对称损失 数据库 实验 发表在2019 CVPR. 摘要 While deep convolutional neural networks (CNNs) ...

  5. zz先睹为快:神经网络顶会ICLR 2019论文热点分析

    先睹为快:神经网络顶会ICLR 2019论文热点分析 - lqfarmer的文章 - 知乎 https://zhuanlan.zhihu.com/p/53011934 作者:lqfarmer链接:ht ...

  6. zz:一个框架看懂优化算法之异同 SGD/AdaGrad/Adam

    首先定义:待优化参数:  ,目标函数: ,初始学习率 . 而后,开始进行迭代优化.在每个epoch  : 计算目标函数关于当前参数的梯度:  根据历史梯度计算一阶动量和二阶动量:, 计算当前时刻的下降 ...

  7. 优化方法总结以及Adam存在的问题(SGD, Momentum, AdaDelta, Adam, AdamW,LazyAdam)

    优化方法总结以及Adam存在的问题(SGD, Momentum, AdaDelta, Adam, AdamW,LazyAdam) 2019年05月29日 01:07:50 糖葫芦君 阅读数 455更多 ...

  8. SWATS算法剖析(自动切换adam与sgd)

    SWATS算法剖析(自动切换adam与sgd) 战歌指挥官 搬砖.码砖.代查水表.... 27 人赞同了该文章 SWATS是ICLR在2018的高分论文,提出的一种自动由Adam切换为SGD而实现更好 ...

  9. 最优化方法系列:Adam+SGD-AMSGrad 重点

    https://blog.csdn.net/wishchin/article/details/80567558 自动调参的Adam方法已经非常给力了,不过这主要流行于工程界,在大多数科学实验室中,模型 ...

随机推荐

  1. A Child's History of England.51

    CHAPTER 14 ENGLAND UNDER KING JOHN, CALLED LACKLAND At two-and-thirty years of age, John became King ...

  2. Struts 2 基础篇【转】

    转载至 : http://www.blogjava.net/huamengxing/archive/2009/10/21/299153.html Struts2架构图 有视频讲解百度一下就可以找到了 ...

  3. Oracle中dbms_random包详解

    Oracle之DBMS_RANDOM包详解参考自:https://www.cnblogs.com/ivictor/p/4476031.html https://www.cnblogs.com/shen ...

  4. Can static functions be virtual in C++?

    In C++, a static member function of a class cannot be virtual. For example, below program gives comp ...

  5. SprignBoot整合Spring Data Elasticsearch

    一.原生java整合elasticsearch的API地址 https://www.elastic.co/guide/en/elasticsearch/client/java-api/6.2/java ...

  6. centos7.4 64位安装 redis-4.0.0

    1.  下载 redis 包 链接:https://pan.baidu.com/s/1g1UE_GTreXoD9uOXB7G3HA 提取码:ug8p 2. 安装gcc.ruby .rubygems等环 ...

  7. Jmeter初级入门教程

    <jmeter:菜鸟入门到进阶>系列 创建一个简单的自动化脚本 创建线程组[Thread Group]: 右击[TestPlan]选择[Add]--[Thread(Users)]--[Th ...

  8. highchars操作集合

    一.tooltip 与鼠标指针的距离想调整tooltip和鼠标指针的距离,官方api 和中文api中都没写,只有轴 label.distance . 但我觉得应该有这个,看源码果然有 tooltip ...

  9. Samba 源码解析之内存管理

    由于工作需要想研究下Samba的源码,下载后发现目录结构还是很清晰的.一般大家可能会对source3和source4文件夹比较疑惑.这两个文件夹针对的是Samba主版本号,所以你可以暂时先看一个.这里 ...

  10. 【CF1591】【数组数组】【逆序对】#759(div2)D. Yet Another Sorting Problem

    题目:Problem - D - Codeforces 题解 此题是给数组排序的题,操作是选取任意三个数,然后交换他们,确保他们的位置会发生改变. 可以交换无限次,最终可以形成一个不下降序列就输出&q ...