Fansblog

Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 3170 Accepted Submission(s): 671

Problem Description

Farmer John keeps a website called ‘FansBlog’ .Everyday , there are many people visited this blog.One day, he find the visits has reached P , which is a prime number.He thinks it is a interesting fact.And he remembers that the visits had reached another prime number.He try to find out the largest prime number Q ( Q < P ) ,and get the answer of Q! Module P.But he is too busy to find out the answer. So he ask you for help. ( Q! is the product of all positive integers less than or equal to n: n! = n * (n-1) * (n-2) * (n-3) *… * 3 * 2 * 1 . For example, 4! = 4 * 3 * 2 * 1 = 24 )

Input

First line contains an number T(1<=T<=10) indicating the number of testcases.
Then T line follows, each contains a positive prime number P (1e9≤p≤1e14)

Output

For each testcase, output an integer representing the factorial of Q modulo P.

Sample Input

1
1000000007

Sample Output

328400734

题意

给出一个素数P,找出小于P的最小素数Q,并计算Q的阶乘对P取模的结果

解决

从P-1开始进行素数检测,因为素数的分布是比较密集的,所以可以用试除法来判断素数。

在找到Q之后,由威尔逊定理可知:当P是素数的情况下,(P-1)! Ξ -1(mod P)

因为求的是Q! mod P,所以我们可以先将(P-1)! mod P求出来的,然后利用除法来计算Q! mod P

Code

 1 #include <bits/stdc++.h>
2 #define ll long long
3 #define ull unsigned long long
4 #define ms(a,b) memset(a,b,sizeof(a))
5 const int inf=0x3f3f3f3f;
6 const ll INF=0x3f3f3f3f3f3f3f3f;
7 const int maxn=1e6+10;
8 const int mod=1e9+7;
9 const int maxm=1e3+10;
10 using namespace std;
11 bool check(ll n)
12 {
13 for(ll i=2;i*i<=n;i++)
14 if(n%i==0)
15 return false;
16 return true;
17 }
18 ll modmul(ll A,ll B,ll Mod)
19 {
20 return (A*B-(ll)((long double)A*B/Mod)*Mod+Mod)%Mod;
21 }
22 ll Pow(ll a,ll b,ll c)
23 {
24 ll ans=1;
25 while(b)
26 {
27 if(b&1)
28 ans=modmul(ans,a,c);
29 b>>=1;
30 a=modmul(a,a,c);
31 }
32 return ans;
33 }
34 ll inv(ll a,ll b)
35 {
36 return Pow(a,b-2,b);
37 }
38 int main(int argc, char const *argv[])
39 {
40 #ifndef ONLINE_JUDGE
41 freopen("in.txt", "r", stdin);
42 freopen("out.txt", "w", stdout);
43 srand((unsigned int)time(NULL));
44 #endif
45 ios::sync_with_stdio(false);
46 cin.tie(0);
47 int t;
48 ll p;
49 cin>>t;
50 while(t--)
51 {
52 cin>>p;
53 ll num;
54 for(ll i=p-1;;i--)
55 if(check(i))
56 {
57 num=i;
58 break;
59 }
60 ll ans=p-1;
61 for(ll i=num+1;i<=p-1;i++)
62 ans=modmul(ans,inv(i,p),p);
63 cout<<ans<<endl;
64 }
65 #ifndef ONLINE_JUDGE
66 cerr<<"Time elapsed: "<<1.0*clock()/CLOCKS_PER_SEC<<" s."<<endl;
67 #endif
68 return 0;
69 }

HDU 6608:Fansblog(威尔逊定理)的更多相关文章

  1. 2019杭电多校第三场hdu6608 Fansblog(威尔逊定理)

    Fansblog 题目传送门 解题思路 Q! % P = (P-1)!/(P-1)...(Q-1) % P. 因为P是质数,根据威尔逊定理,(P-1)!%P=P-1.所以答案就是(P-1)((P-1) ...

  2. hdu 2973"YAPTCHA"(威尔逊定理)

    传送门 题意: 给出自然数 n,计算出 Sn 的值,其中 [ x ]表示不大于 x 的最大整数. 题解: 根据威尔逊定理,如果 p 为素数,那么 (p-1)! ≡ -1(mod p),即 (p-1)! ...

  3. 2019HDU多校第三场F Fansblog——威尔逊定理&&素数密度

    题意 给定一个整数 $P$($10^9 \leq p\leq 1^{14}$),设其前一个质数为 $Q$,求 $Q!  \ \% P$. 分析 暴力...说不定好的板子能过. 根据威尔逊定理,如果 $ ...

  4. HDU-6608 Fansblog(威尔逊定理+素数间隔+逆元)

    参考博客:https://blog.csdn.net/birdmanqin/article/details/97750844 题目链接:链接:http://acm.hdu.edu.cn/showpro ...

  5. HDU 5391 Zball in Tina Town【威尔逊定理】

    <题目链接> Zball in Tina Town Problem Description Tina Town is a friendly place. People there care ...

  6. HDU - 2973:YAPTCHA (威尔逊定理)

    The math department has been having problems lately. Due to immense amount of unsolicited automated ...

  7. HDU 2973 YAPTCHA (威尔逊定理)

    YAPTCHA Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  8. 【HDOJ6608】Fansblog(威尔逊定理)

    题意:给定质数p,求q!模p的值,其中q为小于p的最大质数 1e9<=p<=1e14 思路:根据质数密度近似分布可以暴力找q并检查 找到q后根据威尔逊定理: 把q+1到p-1这一段的逆元移 ...

  9. HDU6608-Fansblog(Miller_Rabbin素数判定,威尔逊定理应用,乘法逆元)

    Problem Description Farmer John keeps a website called ‘FansBlog’ .Everyday , there are many people ...

随机推荐

  1. SpringBoot集成Kafka的实战用法大全

    本文是SpringBoot+Kafka的实战讲解,如果对kafka的架构原理还不了解的读者,建议先看一下<大白话kafka架构原理>.<秒懂kafka HA(高可用)>两篇文章 ...

  2. MIT6.824 分布式系统实验

    LAB1 mapreduce mapreduce中包含了两个角色,coordinator和worker,其中,前者掌管任务的分发和回收,后者执行任务.mapreduce分为两个阶段,map阶段和red ...

  3. 并发 并行 进程 线程 协程 异步I/O python async

    一些草率不精确的观点: 并发: 一起发生,occurence: sth that happens. 并行: 同时处理. parallel lines: 平行线.thread.join()之前是啥?落霞 ...

  4. java9 模块化 jigsaw

    java9并没有在语言层面做出很多改变,而是致力于一些新特性,如模块化,其核心就是解决历史遗留问题,为以后的jar包森林理清道路.模块化是一个很大的命题,就不讲那么细致了,关于java9的特性也有很多 ...

  5. python格式化输出的两种方式对比

    1.%符号方法和format()函数方法 2.对比: 1 print('我今年%d岁' %22.125) 2 print('我今年{0:f}'.format(22.125)) 3 #报错 4 #槽中类 ...

  6. git 日志技术

    1.git log, 在一个分支下, 以时间的倒序方式显示你制造的所有commit列表,包含创建人,时间,提交了什么等信息: 2. git reflog, 获取您在本地repo上还原commit所做工 ...

  7. centos 7 重新获取IP地址

    1.安装软件包 dhclient # yum install dhclient 2.释放现有IP # dhclient -r 3.重新获取 # dhclient 4.查看获取到到IP # ip a

  8. Linux学习 - 文件特殊权限

    一.SUID权限(只针对文件) 只有可执行的二进制程序才能设定SUID权限 命令执行者要对该程序拥有x(执行)权限 1 拥有SUID的文件 /usr/bin/passwd 2 功能: 命令执行者(其他 ...

  9. js格式化合计金额

    var summoney=1040.010400000000000001; var totalMoney=parseFloat(summoney).toFixed(2); var arry=total ...

  10. 【JavaWeb】【Maven】001 下载与配置

    Maven下载与配置 Download Url:Maven – Download Apache Maven After downloading it, unpack it and configure ...