ELBO surgery: yet another way to carve up the variational evidence lower bound
概
这篇文章主要介绍了一种ELBO一种新的改写, 以及可以从中获得的一些启发.
主要内容
=\log \int q_{\phi}(\bm{z}|\bm{x}) \frac{p_{\theta}(\bm{z}, \bm{x})}{q_{\phi}(\bm{z}|\bm{x})} \mathrm{d}\bm{z}
\ge \mathbb{E}_{q_{\phi}(\bm{z}|\bm{x})}\log \frac{p_{\theta}(\bm{z}, \bm{x})}{q_{\phi}(\bm{z}|\bm{x})} \mathrm{d}\bm{z} := \mathcal{L}(\theta, \phi).
\]
上式是一般的ELBO的推导, 我们的目的就是通过最大化\(\mathcal{L}\)以期望相应的似然函数足够大.
ELBO有下列的表示:
Evidence minus posterior KL
\]
最大化\(\mathcal{L}\), 且后验分布拟合的足够好的话, 我们可以期望相应的(对数)似然也足够大.
Average negative energy plus entropy
\]
这里\(\mathbb{H}\)代表熵.
就是一个好的(拟合的)后验分布应该集中于分布的最大值, 但尽量让自己本身的熵也足够大(如果没有第二项, 那拟合的后验分布就会退化成一个点).
Average term-by-term reconstruction minus KL to prior
=\frac{1}{N}\sum_{n=1}^N \mathbb{E}_{q_{\phi}(z_n|x_n)}[\log p_{\theta}(x_n|z_n)] - \mathrm{KL}(q_{\phi}(z_n|x_n) \| p(z_n)).
\]
这个就是我们比较常见的ELBO的一种表达方式, 也就是一个重构误差减去后验分布和先验分布的一个KL散度.
本文的思路
假设\(q(x_n) = \frac{1}{N}, n=1,\cdots, N\).
=\mathbb{E}_{q(x)} \mathbb{E}_{q_{\phi}(z|x)}\log \frac{p_{\theta}(x, z)}{q_{\phi}(z|x)}
=\mathbb{E}_{q(x)} \mathbb{E}_{q_{\phi}(z|x)}\log p_{\theta}(x|z)
+ \mathbb{E}_{q_{\phi}(z)}\log p(z) + \mathbb{E}_{q(x)}[\mathbb{H}(q_{\phi}(z|x))].
\]
其可以进一步表示为:
=\mathbb{E}_{q(x)} \mathbb{E}_{q_{\phi}(z|x)}\log p_{\theta}(x|z)
-(\log N - \mathbb{E}_{q_{\phi}(z)}[\mathbb{H}[q(x|z)]])
-\mathrm{KL}(q_{\phi}(z)\| p(z)).
\]
注: 这里\(q_{\phi}(z) = \frac{1}{n} \sum_{n=1}^N q_{\phi}(z|x_n)\).
注意到上面只有最后一项与先验分布有关, 所以为了提高ELBO, 这要求我们选择一个合适的先验分布\(p(z)\).
当然, 最好就是\(q_{\phi}(z)\), 但是这个计算量太大.
ELBO surgery: yet another way to carve up the variational evidence lower bound的更多相关文章
- ELBO 与 KL散度
浅谈KL散度 一.第一种理解 相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information dive ...
- 文本主题模型之LDA(三) LDA求解之变分推断EM算法
文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法 本文是LDA主题模型的第三篇,读这一篇之前 ...
- [Bayesian] “我是bayesian我怕谁”系列 - Variational Inference
涉及的领域可能有些生僻,骗不了大家点赞.但毕竟是人工智能的主流技术,在园子却成了非主流. 不可否认的是:乃值钱的技术,提高身价的技术,改变世界观的技术. 关于变分,通常的课本思路是: GMM --&g ...
- 生成器的认识及其思考:VAE, GAN, Flow-based Invertible Model
生成器对应于认知器的逆过程. 这一切的起源都是当初一个极具启发性的思想:Sleep-wake algorithm——人睡眠时整理记忆做梦,是一个生成的过程,即通过最终的识别结果企图恢复接收到的刺激,当 ...
- AIOps探索:基于VAE模型的周期性KPI异常检测方法——VAE异常检测
AIOps探索:基于VAE模型的周期性KPI异常检测方法 from:jinjinlin.com 作者:林锦进 前言 在智能运维领域中,由于缺少异常样本,有监督方法的使用场景受限.因此,如何利用无监 ...
- 论文解读(LA-GNN)《Local Augmentation for Graph Neural Networks》
论文信息 论文标题:Local Augmentation for Graph Neural Networks论文作者:Songtao Liu, Hanze Dong, Lanqing Li, Ting ...
- (转) Summary of NIPS 2016
转自:http://blog.evjang.com/2017/01/nips2016.html Eric Jang Technology, A.I., Careers ...
- 变分贝叶斯学习(variational bayesian learning)及重参数技巧(reparameterization trick)
摘要:常规的神经网络权重是一个确定的值,贝叶斯神经网络(BNN)中,将权重视为一个概率分布.BNN的优化常常依赖于重参数技巧(reparameterization trick),本文对该优化方法进行概 ...
- 代码的坏味道(11)——霰弹式修改(Shotgun Surgery)
坏味道--霰弹式修改(Shotgun Surgery) 霰弹式修改(Shotgun Surgery) 类似于 发散式变化(Divergent Change) ,但实际上完全不同.发散式变化(Diver ...
随机推荐
- HDFS05 NameNode和SecondaryNameNode
NameNode和SecondaryNameNode(了解) 目录 NameNode和SecondaryNameNode(了解) NN 和 2NN 工作机制 NameNode工作机制 Secondar ...
- API 管理在云原生场景下的机遇与挑战
作者 | 张添翼 来源 | 尔达Erda公众号 云原生下的机遇和挑战 标准和生态的意义 自从 Kubernetes v1.0 于 2015 年 7 月 21 日发布,CNCF 组织随后建立以来,其 ...
- 初学js正则表达式之密码强度验证
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 从面试官的角度,聊聊java面试流程
在这篇回答里,就讲以我常规的面试流程为例,说下java方面大致会问什么问题,以及如何确认候选人达到招聘要求. 先说面试前准备,可能有些面试官是拿到简历直接问,而且是在候选人自我介绍时再草草浏览简历,但 ...
- gen already exists but is not a source folder. Convert to a source folder or rename it 的解决办法
1. Right click on the project and go to "Properties" //鼠标右键点击项目,然后选中Properties 2. Select ...
- Function overloading and return type
In C++ and Java, functions can not be overloaded if they differ only in the return type. For example ...
- 【力扣】剑指 Offer 50. 第一个只出现一次的字符
在字符串 s 中找出第一个只出现一次的字符.如果没有,返回一个单空格. s 只包含小写字母. 示例: s = "abaccdeff"返回 "b" s = &qu ...
- idea开发环境搭建ssh
idea2020完整web开发(struts2+spring+hibernate) idea破解 第一步: 下载最新的 IDEA 2020.3.2 版本安装包 https://www.jetbrain ...
- ABP VNext框架基础知识介绍(1)--框架基础类继承关系
在我较早的时候,就开始研究和介绍ABP框架,ABP框架相对一些其他的框架,它整合了很多.net core的新技术和相关应用场景,虽然最早开始ABP框架是基于.net framework,后来也全部转向 ...
- Mysql配置文件 客户端
[client] #默认链接的端口 port=3306 #默认链接的socket的位置 socket=/var/lib/mysql.sock #默认编码格式 default-character-set ...