Mysterious For

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 694    Accepted Submission(s): 264

Problem Description
MatRush is an ACMer from ZJUT, and he always love to create some special programs. Here we will talk about one of his recent inventions.

This special program was called "Mysterious For", it was written in C++ language, and contain several simple for-loop instructions as many other programs. As an ACMer, you will often write some for-loop instructions like which is listed below when you are taking an ACM contest.
for (int i = 0; i < n; i++) {
  for (int j = i; j < n; j++) {
    for (int k = j; k < n; k++) {
      blahblahblah();
    }
  }
}

Now, MatRush has designed m for-loop instructions in the "Mysterious For" program, and each for-loop variable was stored in an array a[], whose length is m.

The variable i represents a for-loop instructions is the i-th instruction of the "Mysterious For" program.There only two type of for-loop instructions will occur in MatRush's "Mysterious For" program:

1-type: if a for-loop belongs to 1-type, it will be an instruction like this:
for (int a[i] = 0; a[i] < n; a[i]++) {
    ...
}

2-type: if a for-loop belongs to 2-type, it will be an instruction like this:
for (int a[i] = a[i - 1]; a[i] < n; a[i]++) {
    ...
}

In addition, after the deepest for-loop instruction there will be a function called HopeYouCanACIt(), here is what's inside:
void HopeYouCanACIt() {
    puts("Bazinga!");
}

So, the "Mysterious For" program, obviously, will only print some line of the saying: "Bazinga!", as it designed for.

For example, we can assume that n equals to 3, and if the program has three 1-type for-loop instructions, then it will run 33=27 times of the function HopeYouCanACIt(), so you will get 27 "Bazinga!" in total. But if the program has one 1-type for-loop instruction followed by two 2-type for-loop instructions, then it will run 3+2+1+2+1+1=10 times of that function, so there will be 10 "Bazinga!" on the screen.

Now MatRush has the loop length n and m loop instructions with certain type, then he want to know how many "Bazinga!" will appear on the screen, can you help him? The answer is too big sometimes, so you just only to tell him the answer mod his QQ number:364875103.

All for-loop instructions are surely nested. Besides, MatRush guaranteed that the first one belongs to the 1-type. That is to say, you can make sure that this program is always valid and finite. There are at most 15 1-type for-loop instructions in each program.
 
Input
First, there is an integer T(T<=50), the number of test cases.
For every case, there are 2 lines.
The first line is two integer n(1<=n<=1000000) and m(1<=m<=100000) as described above.
The second line first comes an integer k(1<=k<=15), represents the number of 1-type loop instructions, then follows k distinctive numbers, each number is the i-th 1-type loop instruction's index(started from 0), you can assume the first one of this k numbers is 0 and all numbers are ascending.
All none 1-type loop instructions of these m one belongs to 2-type.
 
Output
For each certain "Mysterious For" program, output one line, "Case #T: ans", where T stands for the case number started with 1, and ans is the number of "Bazinga!" mod 364875103.
 
Sample Input
5
3 3
3 0 1 2
3 3
1 0
3 3
2 0 2
4 4
4 0 1 2 3
10 10
10 0 1 2 3 4 5 6 7 8 9
 
Sample Output
Case #1: 27
Case #2: 10
Case #3: 18
Case #4: 256
Case #5: 148372219

Hint

For the third program, the code is like this:
for (int a[0] = 0; a[0] < n; a[0]++) {
for (int a[1] = a[0]; a[1] < n; a[1]++) {
for (int a[2] = 0; a[2] < n; a[2]++) {
HopeYouCanACIt();
}
}
}
Because n = 3, the answer is 3*3+2*3+1*3=18.

 题意:
m个for循环嵌套,有两种形式,第一类从1开始到n,第二类从上一层循环当前数开始到n,第一层一定是第一种类型,问总的循环的次数对364875103取余的结果。
思路:中国剩余定理+lucas定理;
下面我转载一篇写得不错的思路的一部分
{首先可以看出,每一个第一类循环都是一个新的开始,与前面的状态无关,所以可以把m个嵌套分为几个不同的部分,每一个部分由第一类循环开始,最终结果相乘就可以。
剩下的就是第二类循环的问题,假设一个m层循环,最大到n,
只有第一层:循环n次。C(n, 1)
只有前两层:循环n + (n - 1) + ... + 1 = (n + 1) * n / 2 = C(n + 1, 2);}
接下来是我自己的证明:
有m层循环,然后每层n个;
我们考虑最后一层,然后我们可以用dp的思想,最后一层的第一个数的次数为,C(m-1,m-1),第二个数可以接在上一层,以小于等于第二个结尾的数的后面,那么就是C(m,m-1),同理可以得到剩下的数被计数的个数为C(m+k-1,m-1);
那么这个总的循环次数就是C(m-1,m-1)+C(m,m-1)+C(m+1,m-1)....+C(m+k-1,m-1)+...C(m+n-2,m-1)=
C(m)(m)+C(m,m-1)+C(m+1,m-1)+....C(m+n-2,m-1)根据杨辉三角合并就可得到最终的答案为C(n+m-1,m);
要完整的证明还要用数学归纳法;
然后,我们发现mod不是素数,我们拆分成97*(mod/97);两个素数分别取模,然后用中国剩余定理求出对于mod的模数,同时组合数对97取模用lucas定理,对另一个比较大的直接费马小定理即可。
 

  1 #include <cstdio>
2 #include <cstdlib>
3 #include <cstring>
4 #include <cmath>
5 #include <iostream>
6 #include <algorithm>
7 #include <map>
8 #include <queue>
9 #include <vector>
10 using namespace std;
11 typedef long long LL;
12 bool flag[1000005];
13 LL N1[1200005];
14 LL N2[1200005];
15 const LL mod1=97;
16 const LL mod2=364875103/97;
17 LL quick(LL n,LL m,LL p);
18 LL lucas(LL n,LL m,LL p);
19 pair<LL,LL> CHA(LL *a,LL n,LL *b);
20 LL a[10];
21 LL b[10];
22 int main(void)
23 {
24 LL i,j;
25 int ca=0;
26 int k;
27 scanf("%d",&k);
28 LL n,m;
29 N1[0]=1;
30 N2[0]=1;
31 N2[1]=1;
32 N1[1]=1;
33 for(i=2; i<1200005; i++)
34 {
35 N1[i]=(N1[i-1]*i)%mod1;
36 N2[i]=(N2[i-1]*i)%mod2;
37 }
38 while(k--)
39 {
40 ca++;
41 scanf("%lld %lld",&n,&m);
42 LL s;
43 for(i=0; i<1000005; i++)
44 flag[i]=false;
45 scanf("%lld",&s);
46 LL t;
47 for(i=0; i<s; i++)
48 {
49 scanf("%lld",&t);
50 flag[t]=true;
51 }
52 LL ack=1;
53 LL alk=1;
54 for(i=0; i<m;)
55 {
56 if(flag[i]&&(flag[i+1]&&i!=m-1||i==m-1))
57 {
58 ack=ack*n%mod1;
59 alk=alk*n%mod2;
60
61 i++;
62 }
63 else
64 {
65 for(j=i+1; j<m; j++)
66 {
67 if(flag[j])
68 break;
69 }
70 LL cc=j-i;
71 i=j;
72 LL x=N2[n+cc-1];
73 LL y=N2[cc]*N2[n-1];
74 x=x*quick(y,mod2-2,mod2)%mod2;
75 LL ap=lucas(cc,n+cc-1,mod1);
76 ack=ack%mod1*ap%mod1;
77 alk=alk%mod2*(x)%mod2;
78 }
79 }
80 LL sum=mod1*mod2;
81 memset(a,0,sizeof(a));
82 memset(b,0,sizeof(b));
83 a[0]=mod1;
84 b[0]=ack;
85 b[1]=alk;
86 a[1]=mod2;
87 LL an=0;
88 pair<LL,LL>NA=CHA(a,2,b);
89 printf("Case #%d: %lld\n",ca,NA.first%(mod1*mod2));
90 }
91 return 0;
92 }
93 pair<LL,LL> CHA(LL *a,LL n,LL *b)
94 {
95 int i,j;
96 LL sum=1;
97 LL answer=0;
98 for(i=0; i<n; i++)
99 {
100 sum*=a[i];
101 }
102 for(i=0; i<n; i++)
103 {
104 LL t=sum/a[i];
105 LL ni=quick(t,a[i]-2,a[i]);
106 LL ask=ni*b[i]%sum;
107 ask=ask*t%sum;
108 answer+=ask;
109 answer%=sum;
110 }
111 return make_pair(answer,sum);
112 }
113 LL quick(LL n,LL m,LL p)
114 {
115 n%=p;
116 LL ak=1;
117 while(m)
118 {
119 if(m&1)
120 {
121 ak=ak*n%p;
122 }
123 n=n*n%p;
124 m/=2;
125 }
126 return ak;
127 }
128 LL lucas(LL n,LL m,LL p)
129 {
130 if(n==0)
131 {
132 return 1;
133 }
134 else
135 {
136 LL nx=n%p;
137 LL ny=m%p;
138 if(nx>ny)
139 {
140 return 0;
141 }
142 else
143 {
144 LL x=N1[nx]*N1[ny-nx]%p;
145 LL y=quick(x,p-2,p)*N1[ny]%p;
146 return y*lucas(n/p,m/p,p)%p;
147 }
148 }
149 }

Mysterious For(hdu4373)的更多相关文章

  1. 【转】get a mysterious problem,when i use HttpWebRequest in unity c# script

    in script,i use HttpWebRequest to get service from network.but it comes a mysterious problem. the so ...

  2. D - Mysterious Present

    这个题和求最长递增序列的题类似,为了能输出一组可行的数据,我还用了一点儿链表的知识. Description Peter decided to wish happy birthday to his f ...

  3. codeforces Gym 100187H H. Mysterious Photos 水题

    H. Mysterious Photos Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100187/p ...

  4. 黑龙江省第七届大学生程序设计竞赛-Mysterious Organization

    描述 GFW had intercepted billions of illegal links successfully. It has much more effect. Today, GFW i ...

  5. D. Mysterious Present (看到的一个神奇的DP,也可以说是dfs)

    D. Mysterious Present time limit per test 2 seconds memory limit per test 64 megabytes input standar ...

  6. (20)The most mysterious star in the universe

    https://www.ted.com/talks/tabetha_boyajian_the_most_mysterious_star_in_the_universe/transcript00:12E ...

  7. qq飞车精灵家园里的背景音乐:Mysterious Town pooka 下载

      一直都觉得Mysterious Town pooka特别好听,但是酷狗音乐和网上直接搜搜不到,于是我直接从源文件中找了出来.虽然是.ogg格式,但是在酷狗音乐里还是可以播放的.貌似是<奥丁领 ...

  8. LightOJ 1220 Mysterious Bacteria(唯一分解定理 + 素数筛选)

    http://lightoj.com/volume_showproblem.php?problem=1220 Mysterious Bacteria Time Limit:500MS     Memo ...

  9. IEEEXtreme 10.0 - Mysterious Maze

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Mysterious Maze 题目来源 第10届IEEE极限编程大赛 https://www.hacker ...

随机推荐

  1. 模拟串口UART的实现

    我所祷告的,就是要你们的爱心,在知识和见识上,多而又多,使你们能分辨是非,做诚实无过的人,直到基督的日子.--腓立比书[1:9~10] 最近在调的MCU的型号为STM32F030,配置芯片相较之前的M ...

  2. 宏GENERATED_BODY做了什么?

    Version:4.26.2 UE4 C++工程名:MyProject \ 一般语境下,我们说c++源码的编译大体分为:预处理.编译.链接; cppreference-translation_phas ...

  3. springcloud - alibaba - 3 - 整合config - 更新完毕

    0.补充 1.需求 如果我有这么一个请求:我想要gitee中的配置改了之后,我程序yml中的配置也可以跟着相应产生变化,利用原生的方式怎么做?一般做法如下: 而有了SpringCloud-alibab ...

  4. Yarn 公平调度器案例

    目录 公平调度器案例 需求 配置多队列的公平调度器 1 修改yarn-site.xml文件,加入以下从参数 2 配置fair-scheduler.xml 3 分发配置文件重启yarn 4 测试提交任务 ...

  5. A Child's History of England.16

    CHAPTER 5 ENGLAND UNDER CANUTE THE DANE Canute reigned eighteen years. He was a merciless King at fi ...

  6. MVC、MVVM模式

    MVC 上个世纪70年代,美国施乐帕克研究中心,就是那个发明图形用户界面(GUI)的公司,开发了Smalltalk编程语言,并开始用它编写图形界面的应用程序. 到了Smalltalk-80这个版本的时 ...

  7. 【TCP/IP】之Java socket编程API基础

    Socket是Java网络编程的基础,深入学习socket对于了解tcp/ip网络通信协议很有帮助, 此文讲解Socket的基础编程.Socket用法:①.主要用在进程间,网络间通信. 文章目录如下: ...

  8. jenkins之分布式

    在jenkins的slave节点安装jdk(注:slave节点不需要安装jenkins) #:安装jdk环境 root@ubuntu:/usr/local/src# ls jdk-8u191-linu ...

  9. Java虚拟机(JVM)以及跨平台原理

    相信大家已经了解到Java具有跨平台的特性,可以"一次编译,到处运行",在Windows下编写的程序,无需任何修改就可以在Linux下运行,这是C和C++很难做到的. 那么,跨平台 ...

  10. SpringBoot的定时任务

    springBoot定时任务可分为多线程和单线程,而单线程又分为注解形式,接口形式 1.基于注解形式 基于注解@Scheduled默认为单线程,开启多个任务时,任务的执行时机会受上一个任务执行时间的影 ...