CosId 1.1.8 发布,通用、灵活、高性能的分布式 ID 生成器
CosId 通用、灵活、高性能的分布式 ID 生成器
介绍
CosId 旨在提供通用、灵活、高性能的分布式 ID 生成器。 目前提供了三类 ID 生成器:
SnowflakeId
: 单机 TPS 性能:409W/s JMH 基准测试 , 主要解决 时钟回拨问题 、机器号分配问题 并且提供更加友好、灵活的使用体验。SegmentId
:RedisIdSegmentDistributor
单机 TPS 性能(步长 1000) :2950W+/s JMH 基准测试 , 每次获取一段(Step
) ID,来降低号段分发器的网络IO请求频次提升性能。SegmentChainId
:SegmentChainId
(lock-free) 是对SegmentId
的增强,设计图如下。PrefetchWorker
维护安全距离(safeDistance
), 使得SegmentChainId
达到近似AtomicLong
的 TPS 性能(步长 1000): 10272W+/s JMH 基准测试 。
更新内容(1.1.8)
- 优化:新增抽象
IdSegment
interface。 - 增强:优化
DefaultSegmentId
防御性校验后端发号器持久层号段丢失、回滚。 - 增强:增强
IdSegmentDistributor
支持批量获取号段,降低网络ID请求频次,进一步提升性能。 - 优化:优化
SegmentChainId
(lock-free)性能,合理配置的情况下可达到AtomicLong
性能级别(10272W+/s JMH JMH 基准测试 )。 - 新增:添加
IdSegmentDistributor.Mock
,模拟发号器网络IO请求,方便测试。 - 增强:支持通过 spring-boot 配置开启
SegmentChainId
模式(spring-boot-starter-cosid)。 - 新增:添加
LifecycleSegmentChainId
优雅关闭PrefetchWorker
。
SnowflakeId
SnowflakeId 使用
Long
(64 bits) 位分区来生成 ID 的一种分布式 ID 算法。
通用的位分配方案为:timestamp
(41 bits) +machineId
(10 bits) +sequence
(12 bits) = 63 bits 。
- 41 位
timestamp
= (1L<<41)/(1000/3600/365) 约可以存储 69 年的时间戳,即可以使用的绝对时间为EPOCH
+ 69 年,一般我们需要自定义EPOCH
为产品开发时间,另外还可以通过压缩其他区域的分配位数,来增加时间戳位数来延长可用时间。 - 10 位
machineId
= (1L<<10) = 1024 即相同业务可以部署 1024 个副本 (在 Kubernetes 概念里没有主从副本之分,这里直接沿用 Kubernetes 的定义) 实例,一般情况下没有必要使用这么多位,所以会根据部署规模需要重新定义。 - 12 位
sequence
= (1L<<12) * 1000 = 4096000 即单机每秒可生成约 409W 的 ID,全局同业务集群可产生 4096000*1024=419430W=41.9亿(TPS)。
从 SnowflakeId 设计上可以看出:
timestamp
在高位,所以 SnowflakeId 是本机单调递增的,受全局时钟同步影响 SnowflakeId 是全局趋势递增的。- SnowflakeId 不对任何第三方中间件有强依赖关系,并且性能也非常高。
- 位分配方案可以按照业务系统需要灵活配置,来达到最优使用效果。
- 强依赖本机时钟,潜在的时钟回拨问题会导致 ID 重复。
machineId
需要手动设置,实际部署时如果采用手动分配machineId
,会非常低效。
CosId-SnowflakeId 主要解决 SnowflakeId 俩大问题:机器号分配问题、时钟回拨问题。 并且提供更加友好、灵活的使用体验。
MachineIdDistributor (MachineId 分配器)
目前 CosId 提供了以下三种
MachineId
分配器。
ManualMachineIdDistributor
cosid:
snowflake:
machine:
distributor:
type: manual
manual:
machine-id: 0
手动分配
MachineId
。
StatefulSetMachineIdDistributor
cosid:
snowflake:
machine:
distributor:
type: stateful_set
使用
Kubernetes
的StatefulSet
提供的稳定的标识 ID 作为机器号。
RedisMachineIdDistributor
cosid:
snowflake:
machine:
distributor:
type: redis
使用
Redis
作为机器号的分发存储。
ClockBackwardsSynchronizer (时钟回拨同步器)
cosid:
snowflake:
clock-backwards:
spin-threshold: 10
broken-threshold: 2000
默认提供的 DefaultClockBackwardsSynchronizer
时钟回拨同步器使用主动等待同步策略,spinThreshold
(默认值 10 毫秒) 用于设置自旋等待阈值, 当大于spinThreshold
时使用线程休眠等待时钟同步,如果超过brokenThreshold
(默认值 2 秒)时会直接抛出ClockTooManyBackwardsException
异常。
MachineStateStorage (机器状态存储)
public class MachineState {
public static final MachineState NOT_FOUND = of(-1, -1);
private final int machineId;
private final long lastTimeStamp;
public MachineState(int machineId, long lastTimeStamp) {
this.machineId = machineId;
this.lastTimeStamp = lastTimeStamp;
}
public int getMachineId() {
return machineId;
}
public long getLastTimeStamp() {
return lastTimeStamp;
}
public static MachineState of(int machineId, long lastStamp) {
return new MachineState(machineId, lastStamp);
}
}
cosid:
snowflake:
machine:
state-storage:
local:
state-location: ./cosid-machine-state/
默认提供的 LocalMachineStateStorage
本地机器状态存储,使用本地文件存储机器号、最近一次时间戳,用作 MachineState
缓存。
ClockSyncSnowflakeId (主动时钟同步 SnowflakeId
)
cosid:
snowflake:
share:
clock-sync: true
默认 SnowflakeId
当发生时钟回拨时会直接抛出 ClockBackwardsException
异常,而使用 ClockSyncSnowflakeId
会使用 ClockBackwardsSynchronizer
主动等待时钟同步来重新生成 ID,提供更加友好的使用体验。
SafeJavaScriptSnowflakeId (JavaScript
安全的 SnowflakeId
)
SnowflakeId snowflakeId=SafeJavaScriptSnowflakeId.ofMillisecond(1);
JavaScript
的 Number.MAX_SAFE_INTEGER
只有 53 位,如果直接将 63 位的 SnowflakeId
返回给前端,那么会值溢出的情况,通常我们可以将 SnowflakeId
转换为 String
类型或者自定义 SnowflakeId
位分配来缩短 SnowflakeId
的位数 使 ID
提供给前端时不溢出。
SnowflakeFriendlyId (可以将 SnowflakeId
解析成可读性更好的 SnowflakeIdState
)
cosid:
snowflake:
share:
friendly: true
public class SnowflakeIdState {
private final long id;
private final int machineId;
private final long sequence;
private final LocalDateTime timestamp;
/**
* {@link #timestamp}-{@link #machineId}-{@link #sequence}
*/
private final String friendlyId;
}
public interface SnowflakeFriendlyId extends SnowflakeId {
SnowflakeIdState friendlyId(long id);
SnowflakeIdState ofFriendlyId(String friendlyId);
default SnowflakeIdState friendlyId() {
long id = generate();
return friendlyId(id);
}
}
SnowflakeFriendlyId snowflakeFriendlyId=new DefaultSnowflakeFriendlyId(snowflakeId);
SnowflakeIdState idState=snowflakeFriendlyId.friendlyId();
idState.getFriendlyId(); //20210623131730192-1-0
SegmentId (号段模式)
RedisIdSegmentDistributor (使用Redis
作为号段分发后端存储)
cosid:
segment:
enabled: true
distributor:
type: redis
share:
offset: 0
step: 100
provider:
bizC:
offset: 10000
step: 100
bizD:
offset: 10000
step: 100
RedisIdSegmentDistributor
步长设置为 1 时(每次生成ID
都需要执行一次 Redis 网络 IO 请求)TPS 性能约为 21W/s (JMH 基准测试 ),如果在部分场景下我们对 ID 生成的 TPS 性能有更高的要求,那么可以选择使用增加每次ID
分发步长来降低网络 IO 请求频次,提高 IdGenerator
性能(比如增加步长为 1000,性能可提升到 3545W+/s JMH 基准测试)。
SegmentChainId (号段链模式)
cosid:
segment:
enabled: true
mode: chain
chain:
safe-distance: 100
prefetch-period: 4000ns
distributor:
type: redis
share:
offset: 0
step: 100
provider:
bizC:
offset: 10000
step: 100
bizD:
offset: 10000
step: 100
IdGeneratorProvider
cosid:
snowflake:
provider:
bizA:
# epoch:
# timestamp-bit:
sequence-bit: 12
bizB:
# epoch:
# timestamp-bit:
sequence-bit: 12
IdGenerator idGenerator=idGeneratorProvider.get("bizA");
在实际使用中我们一般不会所有业务服务使用同一个 IdGenerator
,而是不同的业务使用不同的 IdGenerator
,那么 IdGeneratorProvider
就是为了解决这个问题而存在的,他是 IdGenerator
的容器,可以通过业务名来获取相应的 IdGenerator
。
Examples
安装
Gradle
Kotlin DSL
val cosidVersion = "1.1.8";
implementation("me.ahoo.cosid:spring-boot-starter-cosid:${cosidVersion}")
Maven
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<artifactId>demo</artifactId>
<properties>
<cosid.version>1.1.8</cosid.version>
</properties>
<dependencies>
<dependency>
<groupId>me.ahoo.cosid</groupId>
<artifactId>spring-boot-starter-cosid</artifactId>
<version>${cosid.version}</version>
</dependency>
</dependencies>
</project>
application.yaml
cosid:
namespace: ${spring.application.name}
snowflake:
enabled: true
# epoch: 1577203200000
clock-backwards:
spin-threshold: 10
broken-threshold: 2000
machine:
# stable: true
# machine-bit: 10
# instance-id: ${HOSTNAME}
distributor:
type: redis
# manual:
# machine-id: 0
state-storage:
local:
state-location: ./cosid-machine-state/
share:
clock-sync: true
friendly: true
provider:
bizA:
# timestamp-bit:
sequence-bit: 12
bizB:
# timestamp-bit:
sequence-bit: 12
segment:
enabled: true
mode: chain
chain:
safe-distance: 100
prefetch-period: 4000ns
distributor:
type: redis
share:
offset: 0
step: 100
provider:
bizC:
offset: 10000
step: 100
bizD:
offset: 10000
step: 100
JMH-Benchmark
- 基准测试运行环境:笔记本开发机 ( MacBook Pro (M1) )
- 所有基准测试都在开发笔记本上执行。
- Redis 部署环境也在该笔记本开发机上。
SnowflakeId
gradle cosid-core:jmh
# or
java -jar cosid-core/build/libs/cosid-core-1.1.8-jmh.jar -bm thrpt -wi 1 -rf json -f 1
Benchmark Mode Cnt Score Error Units
SnowflakeIdBenchmark.millisecondSnowflakeId_friendlyId thrpt 4020311.665 ops/s
SnowflakeIdBenchmark.millisecondSnowflakeId_generate thrpt 4095403.859 ops/s
SnowflakeIdBenchmark.safeJsMillisecondSnowflakeId_generate thrpt 511654.048 ops/s
SnowflakeIdBenchmark.safeJsSecondSnowflakeId_generate thrpt 539818.563 ops/s
SnowflakeIdBenchmark.secondSnowflakeId_generate thrpt 4206843.941 ops/s
RedisIdBenchmark
gradle cosid-redis:jmh
# or
java -jar cosid-redis/build/libs/cosid-redis-1.1.8-jmh.jar -bm thrpt -wi 1 -rf json -f 1 RedisIdBenchmark
Benchmark Mode Cnt Score Error Units
RedisIdBenchmark.step_1 thrpt 5 207470.850 ± 11832.936 ops/s
RedisIdBenchmark.step_100 thrpt 5 3868126.197 ± 258008.896 ops/s
RedisIdBenchmark.step_1000 thrpt 5 29506073.112 ± 2502253.182 ops/s
RedisChainIdBenchmark
gradle cosid-redis:jmh
# or
java -jar cosid-redis/build/libs/cosid-redis-1.1.8-jmh.jar -bm thrpt -wi 1 -rf json -f 1 RedisChainIdBenchmark
Benchmark Mode Cnt Score Error Units
RedisChainIdBenchmark.atomicLong_baseline thrpt 5 143740421.831 ± 1142477.957 ops/s
RedisChainIdBenchmark.step_1 thrpt 5 301874.926 ± 10340.941 ops/s
RedisChainIdBenchmark.step_100 thrpt 5 25746336.165 ± 433565.840 ops/s
RedisChainIdBenchmark.step_1000 thrpt 5 102722840.616 ± 2368562.637 ops/s
RedisIdBenchmark VS RedisChainIdBenchmark TPS (ops/s)
RedisIdBenchmark VS RedisChainIdBenchmark Sample (us/op)
java -jar cosid-redis/build/libs/cosid-redis-1.1.8-jmh.jar -bm sample -wi 1 -rf json -f 1 -tu us step_1000
Benchmark Mode Cnt Score Error Units
RedisChainIdBenchmark.step_1000 sample 1062954 0.056 ± 0.002 us/op
RedisChainIdBenchmark.step_1000:step_1000·p0.00 sample ≈ 0 us/op
RedisChainIdBenchmark.step_1000:step_1000·p0.50 sample 0.042 us/op
RedisChainIdBenchmark.step_1000:step_1000·p0.90 sample 0.083 us/op
RedisChainIdBenchmark.step_1000:step_1000·p0.95 sample 0.084 us/op
RedisChainIdBenchmark.step_1000:step_1000·p0.99 sample 0.125 us/op
RedisChainIdBenchmark.step_1000:step_1000·p0.999 sample 3.000 us/op
RedisChainIdBenchmark.step_1000:step_1000·p0.9999 sample 8.818 us/op
RedisChainIdBenchmark.step_1000:step_1000·p1.00 sample 290.304 us/op
RedisIdBenchmark.step_1000 sample 1374946 0.064 ± 0.003 us/op
RedisIdBenchmark.step_1000:step_1000·p0.00 sample ≈ 0 us/op
RedisIdBenchmark.step_1000:step_1000·p0.50 sample 0.042 us/op
RedisIdBenchmark.step_1000:step_1000·p0.90 sample 0.042 us/op
RedisIdBenchmark.step_1000:step_1000·p0.95 sample 0.042 us/op
RedisIdBenchmark.step_1000:step_1000·p0.99 sample 0.083 us/op
RedisIdBenchmark.step_1000:step_1000·p0.999 sample 0.291 us/op
RedisIdBenchmark.step_1000:step_1000·p0.9999 sample 46.624 us/op
RedisIdBenchmark.step_1000:step_1000·p1.00 sample 483.840 us/op
CosId 1.1.8 发布,通用、灵活、高性能的分布式 ID 生成器的更多相关文章
- CosId 1.0.0 发布,通用、灵活、高性能的分布式 ID 生成器
CosId 通用.灵活.高性能的分布式 ID 生成器 介绍 CosId 旨在提供通用.灵活.高性能的分布式系统 ID 生成器. 目前提供了俩大类 ID 生成器:SnowflakeId (单机 TPS ...
- CosId 1.0.3 发布,通用、灵活、高性能的分布式 ID 生成器
CosId 通用.灵活.高性能的分布式 ID 生成器 介绍 CosId 旨在提供通用.灵活.高性能的分布式系统 ID 生成器. 目前提供了俩大类 ID 生成器:SnowflakeId (单机 TPS ...
- CosId 1.1.0 发布,通用、灵活、高性能的分布式 ID 生成器
CosId 通用.灵活.高性能的分布式 ID 生成器 介绍 CosId 旨在提供通用.灵活.高性能的分布式系统 ID 生成器. 目前提供了俩大类 ID 生成器:SnowflakeId (单机 TPS ...
- CosId 通用、灵活、高性能的分布式 ID 生成器
CosId 通用.灵活.高性能的分布式 ID 生成器 介绍 CosId 旨在提供通用.灵活.高性能的分布式系统 ID 生成器. 目前提供了俩大类 ID 生成器:SnowflakeId (单机 TPS ...
- 分布式ID生成器(CosId)的设计与实现
分布式ID生成器(CosId)设计与实现 CosId 简介 CosId 旨在提供通用.灵活.高性能的分布式 ID 生成器. 目前提供了俩类 ID 生成器: SnowflakeId : 单机 TPS 性 ...
- 分布式ID(CosId)之号段链模式性能(1.2亿/s)解析
分布式ID(CosId)之号段链模式性能(1.2亿/s)解析 上一篇文章<分布式ID生成器(CosId)设计与实现>我们已经简单讨论过CosId的设计与实现全貌. 但是有很多同学有一些疑问 ...
- 高性能的分布式服务框架 Dubbo
我思故我在,提问启迪思考! 1. 什么是Dubbo? 官网:http://dubbo.io/,DUBBO是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及作为SOA服务治理的 ...
- Tair是一个高性能,分布式,可扩展,高可靠的key/value结构存储系统(转)
Tair是一个高性能,分布式,可扩展,高可靠的key/value结构存储系统! Tair专为小文件优化,并提供简单易用的接口(类似Map)Tair支持Java和C版本的客户端 Tair is a di ...
- GRPC 1.3.4 发布,Google 高性能 RPC 框架(Java C++ Go)
GRPC 1.3.4 发布了,GRPC 是一个高性能.开源.通用的 RPC 框架,面向移动和 HTTP/2 设计,是由谷歌发布的首款基于 Protocol Buffers 的 RPC 框架. GRPC ...
随机推荐
- Docker——Jenkins + Git + Registry构建自动化持续集成环境(CI/CD)
前言 在互联网时代,对于每一家公司,软件开发和发布的重要性不言而喻,目前已经形成一套标准的流程,最重要的组成部分就是持续集成(CI)及持续部署.交付(CD). 本文基于Jenkins+Docker+G ...
- 攻防世界(八)web2
攻防世界系列:web2 1.代码审计 知识补充: strrev(string):反转字符串 strlen(string):字符串长度 substr(string,start,length):截取字符 ...
- 020.Python生成器和生成器函数
一 生成器 1.1 基本概念 元组推导式是是生成器(generator) 生成器定义 生成器可以实现自定义,迭代器是系统内置的,不能够更改 生成器的本质就是迭代器,只不过可以自定义. 生成器有两种定义 ...
- 004.Python运算符
一 算数运算符 1.1 加法 [root@node10 python]# cat test.py var1 = 10 var2 = 7 res = var1 + var2 print(res) [ro ...
- KEIL expected an identifier
error: #40: expected an identifier(在线等) C语言编译是提示的.这句话是什么意思啊, 怎样解决啊 我来答 浏览 33290 次 4个回答 #活动# [芝麻 ...
- Centos7.4 file '/grub/i386-pc/normal.mod' not found,实际为/boot下所有文件丢失
注:如果服务器特别重要,此方案慎用.如果没有其他方案解决,可以使用该方案 事件:搭建在云计算管理平台CAS上的 Centos7.4 虚拟机在一次断电后,启动虚拟机出现file '/grub/i386- ...
- jenkins部署vue项目
一.新建自由风格的项目 二.配置项目 三.部分部署脚本 #!/bin/bashecho $PATHnpm config set proxy nullnpm config set https-proxy ...
- window location href is not a function(Day_36)
报window location href is not a function错误的解决方案: 原因: JS报错是由于写法问题或浏览器不兼容导致的,具体解决方法如下: 原来报错的写法: window. ...
- 重新整理 .net core 实践篇————配置系统之盟约[五]
前言 在asp .net core 中我们会看到一个appsettings.json 文件,它就是我们在服务中的各种配置,是至关重要的一部门. 不管是官方自带的服务,还是我们自己编写的服务都是用它来实 ...
- GO学习-(6) Go语言基础之运算符
Go语言基础之运算符 运算符用于在程序运行时执行数学或逻辑运算. 运算符 Go 语言内置的运算符有: 算术运算符 关系运算符 逻辑运算符 位运算符 赋值运算符 算数运算符 运算符 描述 + 相加 - ...