力扣 - 剑指 Offer 47. 礼物的最大价值
题目
思路1
- 因为是要求最大价值,而且只能移动下方或者右方,因此,每个位置的最大值就是
本身的值
加上上边 / 左边 中的最大值
,然后每次遍历都可以复用上一次的值。因此我们可以得到状态转移方程:- $ dp[i][j]=\begin{matrix} max(dp[i-1][j], dp[i][j-1]) + grid[i][j] \end{matrix} $
- 我们可以创建一个行和列都要多一行的 dp 数组,这样子可以不用判断条件了,但是同时也要注意
grid
中的坐标都要减去 1,因为我们是从 1 开始的:
代码
class Solution {
public int maxValue(int[][] grid) {
int row = grid.length;
int col = grid[0].length;
// 创建dp数组,让 row 和 col 都多创建一行就可以避免判断边界值问题
int dp[][] = new int[row+1][col+1];
for (int i = 1; i <= row; i++) {
for (int j = 1; j <= col; j++) {
// 这里的 grid 中 i-1 和 j-1 是因为我们是从 1 开始的,所以要减去 1 才是原始正确的位置
dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]) + grid[i-1][j-1];
}
}
// 最后直接返回数组右下角值即可
return dp[row][col];
}
}
复杂度分析
- 时间复杂度:\(O(MN)\),
- 空间复杂度:\(O(MN)\),创建 dp 数组所花费的空间
思路2
- 然后我们可以优化一下,因为只能左走或者右走,因此第一行和第一列是固定的一条路,我们可以事先初始化计算一下第一行和第一列,到时就不用计算了。因此直接在原数组上直接进行就可以了
代码
class Solution {
public int maxValue(int[][] grid) {
int row = grid.length;
int col = grid[0].length;
// 先初始化边界
for (int i = 1; i < row; i++) {
grid[i][0] += grid[i-1][0];
}
for (int i = 1; i < col; i++) {
grid[0][i] += grid[0][i-1];
}
// 遍历
for (int i = 1; i < row; i++) {
for (int j = 1; j < col; j++) {
// 选择左边或者上边
grid[i][j] += Math.max(grid[i-1][j], grid[i][j-1]);
}
}
// 最后直接返回数组右下角值即可
return grid[row-1][col-1];
}
}
复杂度分析
- 时间复杂度:\(O(MN)\),
- 空间复杂度:\(O(1)\),无需创建 dp 数组
力扣 - 剑指 Offer 47. 礼物的最大价值的更多相关文章
- 【Java】 剑指offer(47) 礼物的最大价值
本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集 题目 在一个m×n的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值( ...
- 剑指 Offer 47. 礼物的最大价值
题目描述 在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0).你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格.直到到达棋盘的右下角.给定一个棋盘及 ...
- 每日一题 - 剑指 Offer 47. 礼物的最大价值
题目信息 时间: 2019-07-02 题目链接:Leetcode tag:动态规划 难易程度:中等 题目描述: 在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0). ...
- 刷题-力扣-剑指 Offer II 055. 二叉搜索树迭代器
剑指 Offer II 055. 二叉搜索树迭代器 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/kTOapQ 著作权归领扣网络所有 ...
- 刷题-力扣-剑指 Offer 15. 二进制中1的个数
剑指 Offer 15. 二进制中1的个数 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/er-jin-zhi-zhong-1de- ...
- 刷题-力扣-剑指 Offer 42. 连续子数组的最大和
剑指 Offer 42. 连续子数组的最大和 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/lian-xu-zi-shu-zu-de ...
- 力扣 - 剑指 Offer 09. 用两个栈实现队列
目录 题目 思路 代码 复杂度分析 题目 剑指 Offer 09. 用两个栈实现队列 思路 刚开始想的是用stack1作为数据存储的地方,stack2用来作为辅助栈,如果添加元素直接push入stac ...
- 力扣 - 剑指 Offer 37. 序列化二叉树
目录 题目 思路 代码 复杂度分析 题目 剑指 Offer 37. 序列化二叉树 思路 序列化其实就是层序遍历 但是,要能反序列化的话,前.中.后.层序遍历是不够的,必须在序列化时候保存所有信息,这样 ...
- 力扣 - 剑指 Offer 17. 打印从1到最大的n位数
题目 剑指 Offer 17. 打印从1到最大的n位数 思路1 如果有n位,那么最大值就是\(10^n-1\),即如果n是2,那么最大就到输出到99 考虑到大数情况,所以使用字符数组 还要把字符数组转 ...
随机推荐
- Java中的函数式编程(六)流Stream基础
写在前面 如果说函数式接口和lambda表达式是Java中函数式编程的基石,那么stream就是在基石上的最富丽堂皇的大厦. 只有熟悉了stream,你才能说熟悉了Java 的函数式编程. 本文主要介 ...
- kivy Label标记文本
from kivy.app import App from kivy.uix.boxlayout import BoxLayout from kivy.lang import Builder # 注意 ...
- 2019OO第四单元作业总结&OO课程整体总结
第四单元作业总结 第四单元的作业主题是UML图的解析,通过对UML图代码的解析,我对UML图的结构以及各种元素之间的关系的理解更加深入了. ------------------------------ ...
- 2021.8.21考试总结[NOIP模拟45]
T1 打表 由归纳法可以发现其实就是所有情况的总和. $\frac{\sum_{j=1}^{1<<k}(v_j-v_{ans})}{2^k}$ $code:$ 1 #include< ...
- 关于qmake的install
在pro的构建系统中可以设置INSTALLS变量,在make命令之后,执行make install命令触发,将想要的资源拷贝到相应的目录,参考qwt的构建体系,在qwt.pro末尾有这么几句 qwts ...
- OSI参考模型(应用层、表示层、会话层、传输层、网络层、数据链路层、物理层)
文章转自:https://blog.csdn.net/weixin_43914604/article/details/104589085 学习课程:<2019王道考研计算机网络> 学习目的 ...
- PCIe知识摘要记录
摘: 一. 在PCIe的Spec中,并没有特别详细的关于Root Complex的定义,从实际的角度来讲,可以把Root Complex理解为CPU与PCIe总线系统通信的媒介.Endpoint处于P ...
- poj 1129 Channel Allocation(图着色,DFS)
题意: N个中继站,相邻的中继站频道不得相同,问最少需要几个频道. 输入输出: Sample Input 2 A: B: 4 A:BC B:ACD C:ABD D:BC 4 A:BCD B:ACD C ...
- 一步一步学ROP之linux_x64篇(蒸米spark)
目录 一步一步学ROP之linux_x64篇(蒸米spark) 0x00 序 0x01 Memory Leak & DynELF - 在不获取目标libc.so的情况下进行ROP攻击 0x02 ...
- C# StringBuilder和string
StringBuilder和string 1.string是引用类型还是值类型 MSDN官方说string是引用类型: 引用类型:引用分配栈内存,引用类型本身的数据存储在堆中: 值类型:在函数中创建, ...