[论文阅读] LCC-NLM(局部颜色校正, 非线性mask)

文章: Local color correction using non-linear masking

1. 算法原理

如下图所示为, 算法原理框图.

其核心有2个步骤:

  1. 对图像进行模糊, 生成mask;
  2. 对图像进行gamma校正, 得到输出图像, 校正公式为:

对公式含义的解释. 如下图所示, 为不同mask情况下, 输入和输出的关系, 可以看到:

  • 当mask>128时, gamma校正幂次为 \(2^\frac{128-mask}{128}<1\), 校正后的值会增大, 如图中绿色线条所示
  • 当mask=128时, gamma校正幂次为1, 校正不会改变大小, 如图中黄色线条所示
  • 当mask<128时, gamma校正幂次为 \(2^\frac{128-mask}{128}>1\), 校正后的值会减小, 如图中青色线条所示

2. 算法关键

如上述处理过程, 算法关键有2个:

  1. 如何生成mask, 是否需要取反滤波?
  2. gamma校正公式中使用的是与128进行比较, 对于图像整体偏暗或者偏亮的图像是否有效果?

2.1 是否需要滤波

至于是否需要滤波, 文章中一句话已经说明: 滤波可以将同一输入映射成不同的输出.

A local color correction will provide a method to map one input value to many different output values, depending on the values of neighboring pixels.

文章中, 另一句话, 更明显地说明了原因: 当mask没有模糊时, 图像的对比度会降低; 反之, 当mask模糊过度时, 就会简化成简单的gamma校正.

If the mask is not blurred, then the image contrast will be excessively reduced. In comparison, if the mask is overly blurred then this algorithm reduces to simple gamma correction.

这里详细说明这句话的意思:

  • 当有滤波时, 利用了局部邻域像素的信息: 对于同一个输入, 由于邻域像素不同, mask也不相同, 从而使得输出也不相同; 对于同一邻域内不同的输入, mask相同会使得邻域内输出变化相同;
  • 当没有滤波时, 没有利用局部邻域像素的信息, 这里mask可以为固定值或者当前像素的取反值: mask为固定值时, 相当于滤波时窗口半径非常大(滤波后图像为一个常数), 这样相当于对图像做了一个全局的gamma校正, 效果可能不理想; mask为当前像素取反时, 邻域内每个像素的mask都不相同, 输出变化也不相同, 可能会降低图像对比度;

因而, 是需要滤波的. 如下所示, 为不同参数滤波后的效果:

如上所示, 为使用了快速均值滤波不同参数情况下的效果:

  • 滤波半径为0时, 相当于没有滤波, mask为输入取反; 从图中可以看到, 图像中的草皮细节被模糊, 可能就是邻域内的变化不相同导致的;
  • 滤波半径为15时, mask得到了图像大致结构; 从图中可以看到, 图像整体效果较好;
  • 滤波半径为300时, mask基本为一个常数; 从图中可以看到, 效果不是太好;

这里有个问题, 如何选取合适的滤波参数?

2.2 算法适用性

从公式1中可以看到, 当图像整体亮度<128, 或者整体亮度>128时, 效果不太好, 如下图所示.

为了使的算法更具一般性, 可以先对图像进行线性拉伸, 然后再进行处理, 如下图所示结果:

这里线性拉伸不一定是最好的方法, 有可能只用线性拉伸已经有足够好的效果了.

3. 算法改善

3.1 公式调整1

算法在计算mask时, 进行了取反, 在进行gamma校正时, 也是做了取反, 实际上做了重复的工作, 因而可以进行简化, 简化后的校正公式为:

\[O_{xy} = 255 * (\frac{I_{xy}}{255}) ^ {2 ^ {\frac{m_{xy}-127}{128}}}
\]

更改后, 与原始算法是等效的, 更改前后结果对比如下所示.

可以看到, 二者完全是一样的效果.

3.2 公式调整2

结合上面说的拉伸方法, 可以直接在公式中进行更改, 更改后公式如下:

\[O_{xy} = 255 * (\frac{I_{xy}}{ratio}) ^ {2 ^ {\frac{m_{xy}-127}{128}}}
\]

其中, ratio 为抛出一定比例后的最大值, 下图所示为抛出1%后的效果:

4. 代码

原始方法:

gray = double(gray);
gray_inv = 255 - gray;
mask = meanFilterSat(gray_inv, radius);
lcc = 255 * (gray / 255) .^ (2 .^((128 - mask) / 128));

调整后:

gray = double(gray);
mask = meanFilterSat(gray, radius);
lcc = 255 * (gray / 255) .^ (2 .^((mask - 127) / 128));

最后, 使用ratio的方法为:

gray = double(gray);
mask = meanFilterSat(gray, radius); % 快速均值滤波
h_gray = hist_count(gray); % 直方图
ranges = getRanges(h_gray, 0.01); % 动态范围
lcc = 255 * (gray / ranges(2)) .^ (2 .^((mask - 127) / 128));

[论文阅读] LCC-NLM(局部颜色校正, 非线性mask)的更多相关文章

  1. 论文阅读笔记三十六:Mask R-CNN(CVPR2017)

    论文源址:https://arxiv.org/pdf/1703.06870.pdf 开源代码:https://github.com/matterport/Mask_RCNN 摘要 Mask R-CNN ...

  2. 论文阅读笔记六:FCN:Fully Convolutional Networks for Semantic Segmentation(CVPR2015)

    今天来看一看一个比较经典的语义分割网络,那就是FCN,全称如题,原英文论文网址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn ...

  3. [论文阅读]阿里DIN深度兴趣网络之总体解读

    [论文阅读]阿里DIN深度兴趣网络之总体解读 目录 [论文阅读]阿里DIN深度兴趣网络之总体解读 0x00 摘要 0x01 论文概要 1.1 概括 1.2 文章信息 1.3 核心观点 1.4 名词解释 ...

  4. [论文阅读笔记] Structural Deep Network Embedding

    [论文阅读笔记] Structural Deep Network Embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 现有的表示学习方法大多采用浅层模型,这可能不能 ...

  5. 论文阅读:Face Recognition: From Traditional to Deep Learning Methods 《人脸识别综述:从传统方法到深度学习》

     论文阅读:Face Recognition: From Traditional to Deep Learning Methods  <人脸识别综述:从传统方法到深度学习>     一.引 ...

  6. 论文阅读笔记(二十一)【CVPR2017】:Deep Spatial-Temporal Fusion Network for Video-Based Person Re-Identification

    Introduction (1)Motivation: 当前CNN无法提取图像序列的关系特征:RNN较为忽视视频序列前期的帧信息,也缺乏对于步态等具体信息的提取:Siamese损失和Triplet损失 ...

  7. [论文阅读]阿里DIEN深度兴趣进化网络之总体解读

    [论文阅读]阿里DIEN深度兴趣进化网络之总体解读 目录 [论文阅读]阿里DIEN深度兴趣进化网络之总体解读 0x00 摘要 0x01论文概要 1.1 文章信息 1.2 基本观点 1.2.1 DIN的 ...

  8. BERT 论文阅读笔记

    BERT 论文阅读 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 由 @快刀切草莓君 ...

  9. [论文阅读笔记] node2vec Scalable Feature Learning for Networks

    [论文阅读笔记] node2vec:Scalable Feature Learning for Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 由于DeepWal ...

随机推荐

  1. Linux搭建私有yum源

    一.前期准备 环境:CentOS 8.3 镜像: CentOS-7-x86_64-Everything-2009.iso CentOS-8.3.2011-x86_64-dvd1.iso 二.搭建步骤 ...

  2. Python分析【公众号】历史评论,看看大家的留言情况!

    大家好,我是辰哥~~~ 辰哥玩公众号有一段时间了,这期文章分析一波读者的留言情况,不仅可以对公众号的各位铁粉一目了然,还可以通过分析的结果对公众号的经营进行更好的规划.如读者留言的内容通常是内容是什么 ...

  3. 资源:zookeeper下载地址

    提供zookeeper下载地址:https://archive.apache.org/dist/zookeeper/zookeeper-3.4.6/

  4. 使用 Cron4j 表达式 在 Solon 里开发定时任务

    cron4j 是一个轻量级的Java任务调度工具.cron4j-solon-plugin 是 solon 对 cron4j 的适配插件 添加 maven 引用 <dependency> & ...

  5. wumei-smart智能家居开原项目

    一.项目简介 物美智能(wumei-smart)]是一套开源的软硬件系统,可用于二次开发和学习,快速搭建自己的智能家居系统. 硬件工程师可以把自己的设备集成到系统:软件工程师可以使用项目中的设备熟悉软 ...

  6. Sql Server(3)运算符的使用

    where 订货日期 between '2017/10/24' and '2017/10/30'  小的写在前面,大的后面,不可以写反 一:运算符的使用 T-SQL的运算符应用指派运算符算术运算符比较 ...

  7. Python小白的数学建模课-B6. 新冠疫情 SEIR 改进模型

    传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SEIR 模型考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫 ...

  8. python mysql 类 图片保存到表中,从表中读图片形成图片文件

    import pymysql class MysqlHelper(object): conn = None def __init__(self, host, username, password, d ...

  9. POJ 尺取法

    poj3061 Subsequence 题目链接: http://poj.org/problem?id=3061 挑战P146.题意:给定长度为n的数列整数a0,a1,...,a(n-1)以及整数S, ...

  10. Apache HBase 1.7.1 发布,分布式数据库

    Apache HBase 是一个开源的.分布式的.版本化的.非关系的数据库.Apache HBase 提供对数十亿个数据的低延迟随机访问在非专用硬件上有数百万列的行. 关于 HBase更多内容,请参阅 ...