CF755C PolandBall and Forest 题解
Content
给定无向图的 \(n\) 个点的父亲节点,求无向图的联通块个数。
数据范围:\(1\leqslant n\leqslant 10^4\)。
Solution
并查集模板题。
我们将在当前节点和它的父亲节点连在一起,然后看不同的祖先节点的个数即可。
没学过并查集的同学建议先去做 P3367 【模板】并查集。
Code
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream>
using namespace std;
int n, a[10007], f[10007], vis[10007], ans;
int getfa(int x) {
return (x == f[x]) ? x : f[x] = getfa(f[x]);
}
void unionn(int x, int y) {
x = getfa(x), y = getfa(y);
if(x != y) f[x] = y;
}
int main() {
scanf("%d", &n);
for(int i = 1; i <= n; ++i) f[i] = i;
for(int i = 1; i <= n; ++i) {
int x;
scanf("%d", &x);
unionn(x, i);
}
for(int i = 1; i <= n; ++i)
if(!vis[getfa(i)]) ans++, vis[getfa(i)] = 1;
printf("%d", ans);
return 0;
}
CF755C PolandBall and Forest 题解的更多相关文章
- codeforces 755C. PolandBall and Forest
C. PolandBall and Forest time limit per test 1 second memory limit per test 256 megabytes input stan ...
- 【codeforces 755C】PolandBall and Forest
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- PolandBall and Forest
PolandBall lives in a forest with his family. There are some trees in the forest. Trees are undirect ...
- CodeForces 755C PolandBall and Forest (并查集)
题意:给定每一点离他最远的点,问是这个森林里有多少棵树. 析:并查集,最后统计不同根结点的数目即可. 代码如下: #pragma comment(linker, "/STACK:102400 ...
- Codeforces 755C:PolandBall and Forest(并查集)
http://codeforces.com/problemset/problem/755/C 题意:该图是类似于树,给出n个点,接下来p[i]表示在树上离 i 距离最远的 id 是p[i],如果距离相 ...
- CodeForces - 755C PolandBall and Forest (并查集)
题意:给定n个数,Ai的下标为1~n.对于每一个i,Ai与i在同一个树上,且是与i最远的点中id最小的点(这个条件变相的说明i与Ai连通).求森林中树的个数. 分析:若i与Ai连通,则在同一个树上,因 ...
- 某5道CF水题
1.PolandBall and Hypothesis 题面在这里! 大意就是让你找一个m使得n*m+1是一个合数. 首先对于1和2可以特判,是1输出3,是2输出4. 然后对于其他所有的n,我们都可以 ...
- 算法与数据结构基础 - 哈希表(Hash Table)
Hash Table基础 哈希表(Hash Table)是常用的数据结构,其运用哈希函数(hash function)实现映射,内部使用开放定址.拉链法等方式解决哈希冲突,使得读写时间复杂度平均为O( ...
- 算法与数据结构基础 - 深度优先搜索(DFS)
DFS基础 深度优先搜索(Depth First Search)是一种搜索思路,相比广度优先搜索(BFS),DFS对每一个分枝路径深入到不能再深入为止,其应用于树/图的遍历.嵌套关系处理.回溯等,可以 ...
随机推荐
- 【JavaSE】类与类的关系--UML
类(对象/接口)之间的关系 -- UML类图展现 2019-07-14 14:37:19 by冲冲 在面向对象程序设计时,类与类之间的关系主要分为:继承,实现,依赖,关联,聚合,组合等6种关系. ...
- hutool的时间工具类
hutool的时间工具类 糊涂的时间工具类有很多使用方法,用到了这几个 日期向后偏移 String now = DateUtil.now(); Date date4= DateU ...
- 统计学习1:朴素贝叶斯模型(Numpy实现)
模型 生成模型介绍 我们定义样本空间为\(\mathcal{X} \subseteq \mathbb{R}^n\),输出空间为\(\mathcal{Y} = \{c_1, c_2, ..., c_K\ ...
- mingling
mysql> USE mon Reading table information for completion of table and column names You can turn of ...
- 重测序(RADseq)做群体遗传分析套路
实验材料 构建的群体,或自然群体,如各地方品种. RAD文库构建 提取DNA后,构建文库,简要步骤如下: ① 限制性内切酶TaqI酶切: ② 连接P1接头: ③ DNA随机打断片断化: ④ 目的片段回 ...
- Requests的安装和使用
一.Requests的安装1.pip3 install requests2.验证 import requests 不报错即可
- 零基础学习java------30---------wordCount案例(涉及到第三种多线程callable)
知识补充:多线程的第三种方式 来源:http://www.threadworld.cn/archives/39.html 创建线程的两种方式,一种是直接继承Thread,另外一种就是实现Runnabl ...
- 谈谈你对volatile的理解
1.volatile是Java虚拟机提供的轻量级的同步机制 1.1保证可见性1.2不保证原子性1.3禁止指令重排 JMM(Java内存模型Java Memory Model,简称JMM)本身是一种抽象 ...
- IPv6 私有地址
在互联网的地址架构中,专用网络是指遵守RFC 1918(IPV4)和RFC 4193(IPV6)规范,使用专用IP地址空间的网络.私有IP无法直接连接互联网,需要使用网络地址转换(Network Ad ...
- Shell学习(一)——Shell简介
参考博客: [1]Shell简介