[luogu4259]寻找车位
考虑一个分治的做法:按行分治,将所有区间分为两类——经过分割线的、在左/右区间内部,后者显然可以递归下取,考虑前者
先求出出该行上每一列向上和向下的最大长度,记作$up_{i}$和$down_{i}$,然后枚举左端点$l$,找到最小的右端点$r$满足$r-l+1\le min_{i=l}^{r}up_{i}+\min_{i=l}^{r}down_{i}$(否则减小$r$一定不劣)
此时$r$具有单调性,再用一个单调队列维护即可,但时间复杂度为$o(qnm\log_{2}n)$,甚至劣于$o(qnm)$的暴力,因此需要优化
事实上,分治的很多过程都是重复的,即用线段树来维护区间,对于一个完全包含的区间,我们不需要搜下去,可以直接从该点得到答案
具体的,对于每一个区间:1.预处理出$up_{i}$和$down_{i}$;2.预处理出每一个$l$对应的$r$;3.维护第2项的子树最大值,合并的维护$o(m)$暴力即可,总复杂度为$o(nm+qm\log_{2}n)$
细节:关于$up_{i}$和$down_{i}$的处理另一种方法是求出每一个区间前后缀最长的1,根据子区间答案即可得到(而不保存$up_{i}$和$down_{i}$)


1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 4000005
4 #define L (k<<1)
5 #define R (L+1)
6 #define mid (l+r>>1)
7 #define y1 y11
8 struct ji{
9 int l,r;
10 };
11 deque<int>q1,q2;
12 vector<ji>zero,v[N<<2];
13 vector<int>vv,f[N<<2],mx[N<<2];
14 int n,m,q,p,x,y,x1,y1,x2,y2,ans;
15 vector<ji> merge(vector<ji>x,vector<ji>y,int l1,int l2){
16 vector<ji>v;
17 for(int i=0;i<m;i++){
18 v.push_back(ji{0,0});
19 if (x[i].l<l1)v[i].l=x[i].l;
20 else v[i].l=l1+y[i].l;
21 if (y[i].r<l2)v[i].r=y[i].r;
22 else v[i].r=l2+x[i].r;
23 }
24 q1.clear(),q2.clear(),vv.clear();
25 for(int i=0,j=-1;i<m;i++){
26 while ((j<m)&&((j<i)||(j-i+1<=x[q1.front()].r+y[q2.front()].l))){
27 if (++j==m)break;
28 while ((!q1.empty())&&(x[q1.back()].r>=x[j].r))q1.pop_back();
29 q1.push_back(j);
30 while ((!q2.empty())&&(y[q2.back()].l>=y[j].l))q2.pop_back();
31 q2.push_back(j);
32 }
33 vv.push_back(j-1);
34 while ((!q1.empty())&&(q1.front()<=i))q1.pop_front();
35 while ((!q2.empty())&&(q2.front()<=i))q2.pop_front();
36 }
37 return v;
38 }
39 void up(int k,int l,int r){
40 v[k]=merge(v[L],v[R],mid-l+1,r-mid);
41 f[k]=vv;
42 for(int i=0;i<m;i++)mx[k][i]=max(max(mx[L][i],mx[R][i]),f[k][i]);
43 }
44 void build(int k,int l,int r){
45 for(int i=0;i<m;i++){
46 f[k].push_back(0);
47 mx[k].push_back(0);
48 }
49 if (l==r){
50 for(int i=1;i<=m;i++){
51 scanf("%d",&p);
52 v[k].push_back(ji{p,p});
53 f[k][i]=mx[k][i]=i-1-(p^1);
54 }
55 return;
56 }
57 build(L,l,mid);
58 build(R,mid+1,r);
59 up(k,l,r);
60 }
61 void update(int k,int l,int r,int x,int y){
62 if (l==r){
63 v[k][y].l^=1;
64 v[k][y].r^=1;
65 f[k][y]=mx[k][y]=y-(v[k][l].l^1);
66 return;
67 }
68 if (x<=mid)update(L,l,mid,x,y);
69 else update(R,mid+1,r,x,y);
70 up(k,l,r);
71 }
72 vector<ji> query(int k,int l,int r,int x,int y,int xx,int yy){
73 if ((l>y)||(x>r))return zero;
74 if ((x<=l)&&(r<=y)){
75 for(int i=xx;i<=yy;i++)ans=max(ans,min(mx[k][i],yy)-i+1);
76 return v[k];
77 }
78 int ll=min(mid,y)-max(l,x),lr=min(r,y)-max(mid+1,x);
79 vector<ji>vl,vr;
80 vl=query(L,l,mid,x,y,xx,yy);
81 vr=query(R,mid+1,r,x,y,xx,yy);
82 vl=merge(vl,vr,max(ll+1,0),max(lr+1,0));
83 for(int i=xx;i<=yy;i++)ans=max(ans,min(vv[i],yy)-i+1);
84 return vl;
85 }
86 int main(){
87 scanf("%d%d%d",&n,&m,&q);
88 build(1,1,n);
89 for(int i=0;i<m;i++)zero.push_back(ji{0,0});
90 for(int i=1;i<=q;i++){
91 scanf("%d",&p);
92 if (!p){
93 scanf("%d%d",&x,&y);
94 update(1,1,n,x,y-1);
95 }
96 else{
97 scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
98 ans=0;
99 query(1,1,n,x1,x2,y1-1,y2-1);
100 printf("%d\n",ans);
101 }
102 }
103 return 0;
104 }
[luogu4259]寻找车位的更多相关文章
- [Code+#3] 寻找车位
Description 给定一个大小为 \(n\times m\) 的 \(01\) 矩阵. 要求支持:单点翻转,询问子矩形内部最大正方形. \(n\times m\leq 4\cdot 10^6,n ...
- loj #6302. 「CodePlus 2018 3 月赛」寻找车位【线段树+单调队列】
考虑静态怎么做:枚举右边界,然后枚举上边界,对应的下边界一定单调不降,单调栈维护每一列从当前枚举的右边界向左最长空位的长度,这样是O(nm)的 注意到n>=m,所以m<=2000,可以枚举 ...
- <停车卫> 产品需求说明书 version 2.0
<停车卫> 产品需求说明书 文档版本号: Version 2.0 文档编号: xxxx 文档密级: 归属部门/项目: 产品名: 停车卫 子系统名: 编写人: kina 编写日期: 2015 ...
- 瞬间读懂什么是互联网思维、大数据、O2O、众筹、红海
1.什么叫大数据? 某必胜客店的电话铃响了,客服人员拿起电话. 客服:必胜客.您好,请问有什么需要我为您服务? 顾客:你好,我想要一份…… 客服:先生,烦请先把您的会员卡号告诉我. 顾客:16846 ...
- 线下市场,选择微信小程序从未显得如此重要
2017 年 1 月 9 日,小程序正式上线,到今日,3 月 8 号,这个新产品面世刚好满两个月.小程序刚推出便受到全球关注,腾讯股价当天即创逾一个月高位,但关注度先是急速上涨,不久便迅速降温,甚至在 ...
- zz“老司机”成长之路:自动驾驶车辆调试实践
随着自动驾驶技术的发展,一辆新车从被改装到上路需要经过的调试流程也有了许多提升.今天,我希望结合自己之前的调车经验来跟大家分享一下我们是如何将系统的各个模块逐步上车.调试.集成,进而将一辆“新手”车培 ...
- [LeetCode] Find the Celebrity 寻找名人
Suppose you are at a party with n people (labeled from 0 to n - 1) and among them, there may exist o ...
- [LeetCode] Find Minimum in Rotated Sorted Array II 寻找旋转有序数组的最小值之二
Follow up for "Find Minimum in Rotated Sorted Array":What if duplicates are allowed? Would ...
- [LeetCode] Find Minimum in Rotated Sorted Array 寻找旋转有序数组的最小值
Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7 migh ...
随机推荐
- Zookeeper 集群部署的那些事儿
简介 额...., &*$% 淘气! ZooKeeper 是 Apache 的一个顶级项目,为分布式应用提供高效.高可用的分布式协调服务. ZooKeeper本质上是一个分布式的小文件存储系统 ...
- 题解 [SBCOI2020] 一直在你身旁
题目传送门 题目大意 给出一个长度为 \(n\) 的单调不减的序列,每次可以选出一个点,产生贡献 \(a_k\),我们可以得知我们需要找到的数是否大于 \(k\).问找到要找到的数最小花费. \(n\ ...
- bzoj1834 ZJOI2010网络扩容(费用流)
给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求: 1.在不扩容的情况下,1到N的最大流: 2.将1到N的最大流增加K所需的最小扩容费用. 其中\(n ...
- 【分享】 一款自用的Anki卡片模板:黄子涵单词卡片 v1
[分享] 一款自用的Anki卡片模板:黄子涵单词卡片 v1 说明 第一代的功能 主要有两部分组成:英文和含义,目前主要是为自己记忆Web前端一些常用的单词而服务 有美美哒背景图,本来想修改为随机背景图 ...
- 你对微信小程序的理解?优缺点?
一.是什么 2017年,微信正式推出了小程序,允许外部开发者在微信内部运行自己的代码,开展业务 截至目前,小程序已经成为国内前端的一个重要业务,跟 Web 和手机 App 有着同等的重要性 小程序是一 ...
- nsq - 一条消息的生命周期(一)
经过前面几篇的学习,相信大家对nsq已经有了一个大概的了解,我在写这篇文章的时候也看了很多其他人写的教程,发现大家对于分析系统每个点写的很不错,但是都很少有整体串起来一起走一遍,所以,我打算分成2-3 ...
- Noip模拟4(忁靈霁) 2021.6.6
T1 随(Rand) 由杠哥大定理可得,这题目前不可做,先跳走啦,咕咕.... T2 单(single) 考场上,简单看一眼就看出是个高斯消元,然后..... 板子没记住!!! 然而这不是最糟糕的.. ...
- CodeForces-1076E Vasya and a Tree
CodeForces - 1076E Problem Description: Vasya has a tree consisting of n vertices with root in verte ...
- 最小最大堆min-max Heap
(1)由性质5只能插在奇数层,即根节点处,7下沉到右堆的min level,10下沉到max level,插入后满足min-max heap性质,很容易画出: (2)由性质80也是向右堆插入,且插入到 ...
- 常用Java API:HashMap 和 TreeMap
摘要 本文主要介绍Map接口下的HashMap和TreeMap. HashMap HashMap是基于哈希表的 Map 接口的实现,是无序的 clear()//清空. containsKey(Obje ...