[luogu4259]寻找车位
考虑一个分治的做法:按行分治,将所有区间分为两类——经过分割线的、在左/右区间内部,后者显然可以递归下取,考虑前者
先求出出该行上每一列向上和向下的最大长度,记作$up_{i}$和$down_{i}$,然后枚举左端点$l$,找到最小的右端点$r$满足$r-l+1\le min_{i=l}^{r}up_{i}+\min_{i=l}^{r}down_{i}$(否则减小$r$一定不劣)
此时$r$具有单调性,再用一个单调队列维护即可,但时间复杂度为$o(qnm\log_{2}n)$,甚至劣于$o(qnm)$的暴力,因此需要优化
事实上,分治的很多过程都是重复的,即用线段树来维护区间,对于一个完全包含的区间,我们不需要搜下去,可以直接从该点得到答案
具体的,对于每一个区间:1.预处理出$up_{i}$和$down_{i}$;2.预处理出每一个$l$对应的$r$;3.维护第2项的子树最大值,合并的维护$o(m)$暴力即可,总复杂度为$o(nm+qm\log_{2}n)$
细节:关于$up_{i}$和$down_{i}$的处理另一种方法是求出每一个区间前后缀最长的1,根据子区间答案即可得到(而不保存$up_{i}$和$down_{i}$)


1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 4000005
4 #define L (k<<1)
5 #define R (L+1)
6 #define mid (l+r>>1)
7 #define y1 y11
8 struct ji{
9 int l,r;
10 };
11 deque<int>q1,q2;
12 vector<ji>zero,v[N<<2];
13 vector<int>vv,f[N<<2],mx[N<<2];
14 int n,m,q,p,x,y,x1,y1,x2,y2,ans;
15 vector<ji> merge(vector<ji>x,vector<ji>y,int l1,int l2){
16 vector<ji>v;
17 for(int i=0;i<m;i++){
18 v.push_back(ji{0,0});
19 if (x[i].l<l1)v[i].l=x[i].l;
20 else v[i].l=l1+y[i].l;
21 if (y[i].r<l2)v[i].r=y[i].r;
22 else v[i].r=l2+x[i].r;
23 }
24 q1.clear(),q2.clear(),vv.clear();
25 for(int i=0,j=-1;i<m;i++){
26 while ((j<m)&&((j<i)||(j-i+1<=x[q1.front()].r+y[q2.front()].l))){
27 if (++j==m)break;
28 while ((!q1.empty())&&(x[q1.back()].r>=x[j].r))q1.pop_back();
29 q1.push_back(j);
30 while ((!q2.empty())&&(y[q2.back()].l>=y[j].l))q2.pop_back();
31 q2.push_back(j);
32 }
33 vv.push_back(j-1);
34 while ((!q1.empty())&&(q1.front()<=i))q1.pop_front();
35 while ((!q2.empty())&&(q2.front()<=i))q2.pop_front();
36 }
37 return v;
38 }
39 void up(int k,int l,int r){
40 v[k]=merge(v[L],v[R],mid-l+1,r-mid);
41 f[k]=vv;
42 for(int i=0;i<m;i++)mx[k][i]=max(max(mx[L][i],mx[R][i]),f[k][i]);
43 }
44 void build(int k,int l,int r){
45 for(int i=0;i<m;i++){
46 f[k].push_back(0);
47 mx[k].push_back(0);
48 }
49 if (l==r){
50 for(int i=1;i<=m;i++){
51 scanf("%d",&p);
52 v[k].push_back(ji{p,p});
53 f[k][i]=mx[k][i]=i-1-(p^1);
54 }
55 return;
56 }
57 build(L,l,mid);
58 build(R,mid+1,r);
59 up(k,l,r);
60 }
61 void update(int k,int l,int r,int x,int y){
62 if (l==r){
63 v[k][y].l^=1;
64 v[k][y].r^=1;
65 f[k][y]=mx[k][y]=y-(v[k][l].l^1);
66 return;
67 }
68 if (x<=mid)update(L,l,mid,x,y);
69 else update(R,mid+1,r,x,y);
70 up(k,l,r);
71 }
72 vector<ji> query(int k,int l,int r,int x,int y,int xx,int yy){
73 if ((l>y)||(x>r))return zero;
74 if ((x<=l)&&(r<=y)){
75 for(int i=xx;i<=yy;i++)ans=max(ans,min(mx[k][i],yy)-i+1);
76 return v[k];
77 }
78 int ll=min(mid,y)-max(l,x),lr=min(r,y)-max(mid+1,x);
79 vector<ji>vl,vr;
80 vl=query(L,l,mid,x,y,xx,yy);
81 vr=query(R,mid+1,r,x,y,xx,yy);
82 vl=merge(vl,vr,max(ll+1,0),max(lr+1,0));
83 for(int i=xx;i<=yy;i++)ans=max(ans,min(vv[i],yy)-i+1);
84 return vl;
85 }
86 int main(){
87 scanf("%d%d%d",&n,&m,&q);
88 build(1,1,n);
89 for(int i=0;i<m;i++)zero.push_back(ji{0,0});
90 for(int i=1;i<=q;i++){
91 scanf("%d",&p);
92 if (!p){
93 scanf("%d%d",&x,&y);
94 update(1,1,n,x,y-1);
95 }
96 else{
97 scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
98 ans=0;
99 query(1,1,n,x1,x2,y1-1,y2-1);
100 printf("%d\n",ans);
101 }
102 }
103 return 0;
104 }
[luogu4259]寻找车位的更多相关文章
- [Code+#3] 寻找车位
Description 给定一个大小为 \(n\times m\) 的 \(01\) 矩阵. 要求支持:单点翻转,询问子矩形内部最大正方形. \(n\times m\leq 4\cdot 10^6,n ...
- loj #6302. 「CodePlus 2018 3 月赛」寻找车位【线段树+单调队列】
考虑静态怎么做:枚举右边界,然后枚举上边界,对应的下边界一定单调不降,单调栈维护每一列从当前枚举的右边界向左最长空位的长度,这样是O(nm)的 注意到n>=m,所以m<=2000,可以枚举 ...
- <停车卫> 产品需求说明书 version 2.0
<停车卫> 产品需求说明书 文档版本号: Version 2.0 文档编号: xxxx 文档密级: 归属部门/项目: 产品名: 停车卫 子系统名: 编写人: kina 编写日期: 2015 ...
- 瞬间读懂什么是互联网思维、大数据、O2O、众筹、红海
1.什么叫大数据? 某必胜客店的电话铃响了,客服人员拿起电话. 客服:必胜客.您好,请问有什么需要我为您服务? 顾客:你好,我想要一份…… 客服:先生,烦请先把您的会员卡号告诉我. 顾客:16846 ...
- 线下市场,选择微信小程序从未显得如此重要
2017 年 1 月 9 日,小程序正式上线,到今日,3 月 8 号,这个新产品面世刚好满两个月.小程序刚推出便受到全球关注,腾讯股价当天即创逾一个月高位,但关注度先是急速上涨,不久便迅速降温,甚至在 ...
- zz“老司机”成长之路:自动驾驶车辆调试实践
随着自动驾驶技术的发展,一辆新车从被改装到上路需要经过的调试流程也有了许多提升.今天,我希望结合自己之前的调车经验来跟大家分享一下我们是如何将系统的各个模块逐步上车.调试.集成,进而将一辆“新手”车培 ...
- [LeetCode] Find the Celebrity 寻找名人
Suppose you are at a party with n people (labeled from 0 to n - 1) and among them, there may exist o ...
- [LeetCode] Find Minimum in Rotated Sorted Array II 寻找旋转有序数组的最小值之二
Follow up for "Find Minimum in Rotated Sorted Array":What if duplicates are allowed? Would ...
- [LeetCode] Find Minimum in Rotated Sorted Array 寻找旋转有序数组的最小值
Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7 migh ...
随机推荐
- IDEA Web渲染插件开发(一)— 使用JCEF
目前网上已经有了很多关于IDEA(IntelliJ平台)的插件开发教程了,本人觉得简书上这位作者秋水畏寒的关于插件开发的文章很不错,在我进行插件开发的过程中指导了我很多.但是综合下来看,在IDEA上加 ...
- tomcat启动程序报错
1.问题 23-Apr-2021 10:53:38.897 INFO [localhost-startStop-1] org.apache.catalina.startup.HostConfig.de ...
- 构建idea父工程
构建idea父工程 首先通过idea新建一个Maven项目: 选择本地Maven版本: 工程名称: 选择字符编码:utf-8 file -> Settings -> Editor -> ...
- 详解build-gradle文件
目录 gradle 两个build.gradle文件 最外层目录下的build.gradle文件 jcenter dependencies闭包 app目录下的build.gradle文件 com.an ...
- 从0到1使用Kubernetes系列(三):使用Ansible安装Kubernetes集群
前两期的文章介绍了Kubernetes基本概念和架构,用Kubeadm+Ansible搭建Kubernetes集群所需要的工具及其作用.本篇介绍怎么使用Ansible安装Kubernetes集群. 启 ...
- 海信A6/A6L A7Pro/CC A5PRO/A5PRO CC 安装gms google service指南
用过海信双面屏或者eink手机的朋友都知道,海信手机就是死活安装不了谷歌全家桶,因为海信的领导说跟谷歌有协议不能安装谷歌框架(还说后期google审核坚决不给安装,人家其他ov mui都可以安装).不 ...
- DL4J实战之六:图形化展示训练过程
欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本篇是<DL4J实战>系列的第六 ...
- CentOS 文件管理
目录 目录管理 目录结构 切换目录 查看目录 创建目录 复制目录 剪切目录 删除目录 文件管理 查看文件 创建文件 复制文件 剪切文件 删除文件 创建链接 目录管理 目录也是一种文件. 蓝色目录,绿色 ...
- 《手把手教你》系列技巧篇(三十五)-java+ selenium自动化测试-单选和多选按钮操作-下篇(详解教程)
1.简介 今天这一篇宏哥主要是讲解一下,如何使用list容器来遍历多选按钮.大致两部分内容:一部分是宏哥在本地弄的一个小demo,另一部分,宏哥是利用JQueryUI网站里的多选按钮进行实战. 2.d ...
- PCIE学习笔记--PCIe错误源详解(二)
转载地址:http://blog.chinaaet.com/justlxy/p/5100057799 这篇文章主要介绍事务(Transaction)错误.链路流量控制(Link Flow Contro ...