题目

剑指 Offer 42. 连续子数组的最大和

思路1(分析数组的规律)

  • 我们可以从头到尾逐个累加,若之前的累加和小于0,那就从丢弃之前的累加,从当前开始重新累加,同时在遍历过程中比较记录下最大值

    • curSum记为当前最大值,为 0,以 [-2,1,-3,4,-1,2,1,-5,4] 为例:

      1. 首先加上 -2,此时 curSum 为 -2
      2. 由于 -2 小于 0,所以丢弃,然后再加上 1,此时 curSum 为 1
      3. 再加上 -3,此时 curSum 为 -2
      4. 由于 -2 小于 0,所以再次丢掉,然后加上 4,此时 curSum 为4
      5. 然后加上 -1,此时 curSum 为 3
      6. 再加上 2,此时 curSum 为 5
      7. 再加上 1,此时 curSum 为 6
      8. 再加上 -5,此时 curSum 为 1
      9. 最后再加上最后一个 4,此时 curSum 为 5
      10. 在这每次遍历中,我们使用一个变量 res 存储最大值,可以找到最大值为 6

代码

class Solution {
public int maxSubArray(int[] nums) { int length = nums.length;
// 最大总和值
int res = Integer.MIN_VALUE;
// 当前总和
int curSum = 0; for (int i = 0; i < length; i++) {
if (curSum < 0) {
// 如果 i 之前总和值小于0,那就从 i 开始重新计算
curSum = nums[i];
} else {
// 否则加上当前的值
curSum += nums[i];
} // 寻找最大值
if (curSum > res) {
res = curSum;
}
} return res;
}
}

复杂度分析

  • 时间复杂度:\(O(N)\)
  • 空间复杂度:\(O(1)\)

思路2(动态规划)

  • 和思路一差不多动态规划就是利用历史记录,避免重复计算。所以也是从头到尾逐个累加,若之前的累加和小于0,那就从丢弃之前的累加,从当前开始重新累加,我们可以定义一个 dp 数组,dp[i] 代表的意义就是以 i 结尾的子数组的最大值。因此我们可以得出状态转移方程:

    \[dp[i] = \begin{cases} dp[i-1]+nums[i], & \text{if } dp[i-1]<0 \\ nums[i], & \text{if } dp[i-1]\geq0 \end{cases}
    \]
  • 既然我们可以得到以 i 结尾子数组的最大值,那么只需要从这些最大值中找到最大的一个就是结果了~

代码

class Solution {
public int maxSubArray(int[] nums) {
int length = nums.length;
int[] dp = new int[length];
dp[0] = nums[0];
int res = dp[0]; for (int i = 1; i < length; i++) {
dp[i] = dp[i-1] > 0 ? dp[i-1]+nums[i] : nums[i];
res = Math.max(res, dp[i]);
} return res;
}
}

可以进一步优化:

class Solution {
public int maxSubArray(int[] nums) {
int length = nums.length;
// 记录子数组中的最大值
int res = Integer.MIN_VALUE;
// 记录前一段子数组之和
int preSum = 0; for (int num : nums) {
// 意思也是判断前一个字数组之和是否小于0
preSum = Math.max(num, preSum + num);
// 然后记录最大值
res = Math.max(res, preSum);
} return res;
}
}

复杂度分析

  • 时间复杂度:\(O(N)\)
  • 空间复杂度:\(O(1)\)

力扣 - 剑指 Offer 42. 连续子数组的最大和的更多相关文章

  1. 刷题-力扣-剑指 Offer 42. 连续子数组的最大和

    剑指 Offer 42. 连续子数组的最大和 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/lian-xu-zi-shu-zu-de ...

  2. 剑指 Offer 42. 连续子数组的最大和 + 动态规划

    剑指 Offer 42. 连续子数组的最大和 题目链接 状态定义: 设动态规划列表 \(dp\) ,\(dp[i]\) 代表以元素 \(4nums[i]\) 为结尾的连续子数组最大和. 为何定义最大和 ...

  3. 【Java】 剑指offer(42) 连续子数组的最大和

    本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 输入一个整型数组,数组里有正数也有负数.数组中一个或连续的多个整/ ...

  4. 剑指 Offer 42. 连续子数组的最大和

    题目描述 输入一个整型数组,数组中的一个或连续多个整数组成一个子数组.求所有子数组的和的最大值. 要求时间复杂度为\(O(n)\). 示例1: 输入: nums = [-2,1,-3,4,-1,2,1 ...

  5. 每日一题 - 剑指 Offer 42. 连续子数组的最大和

    题目信息 时间: 2019-06-30 题目链接:Leetcode tag: 动态规划 难易程度:简单 题目描述: 输入一个整型数组,数组里有正数也有负数.数组中的一个或连续多个整数组成一个子数组.求 ...

  6. 【剑指Offer】连续子数组的最大和 解题报告(Python)

    [剑指Offer]连续子数组的最大和 解题报告(Python) 标签(空格分隔): 剑指Offer 题目地址:https://www.nowcoder.com/ta/coding-interviews ...

  7. 《剑指Offer》- 连续子数组的最大和或最小和

    前言 本文是<剑指Offer>系列(JavaScript版)的第一篇,题目是"连续子数组的最大和或最小和". 话不多说,开始"打怪"修炼... 一. ...

  8. Go语言实现:【剑指offer】连续子数组的最大和

    该题目来源于牛客网<剑指offer>专题. HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学.今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向 ...

  9. 《剑指offer》连续子数组的最大和

    本题来自<剑指offer> 反转链表 题目: 思路: C++ Code: Python Code: 总结:

随机推荐

  1. SpringBoot配置文件-多环境切换

    profile是Spring对不同环境提供不同配置功能的支持,可以通过激活不同的环境版本,实现快速切换环境: 多个文件-配置多环境: 需要多个配置文件,文件名可以是 application-{prof ...

  2. 【学习转载】MyBatis源码解析——日志记录

    声明:转载自前辈:开心的鱼a1 一 .概述 MyBatis没有提供日志的实现类,需要接入第三方的日志组件,但第三方日志组件都有各自的Log级别,且各不相同,但MyBatis统一提供了trace.deb ...

  3. epoll实现快速ping

    概述 在VOIP的运营过程中,最常见的一类问题就是语音质量问题,网络间的丢包.延迟.抖动都会造成语音质量的体验下降. 当现网出现语音质量问题的时候,我们有没有工具能够快速的界定问题的边界,缩小排查的范 ...

  4. 初学python-day5 集合

  5. try-catch-finally面试题

    try catch finally 执行顺序面试题总结 执行顺序 今天牛客网遇到这个题目,做对了,但是下面的评论却很值得看看 public class TestTry { public int add ...

  6. [no code][scrum meeting] Beta 12

    $( "#cnblogs_post_body" ).catalog() 例会时间:5月27日11:30,主持者:乔玺华 一.工作汇报 人员 昨日完成任务 明日要完成的任务 乔玺华 ...

  7. 碰撞的蚂蚁 牛客网 程序员面试金典 C++ Java Python

    碰撞的蚂蚁 牛客网 程序员面试金典 C++ Java Python 题目描述 在n个顶点的多边形上有n只蚂蚁,这些蚂蚁同时开始沿着多边形的边爬行,请求出这些蚂蚁相撞的概率.(这里的相撞是指存在任意两只 ...

  8. 极速上手 VUE 3—v-model 的使用变化

    本篇文章主要介绍 v-model 在 Vue2 和 Vue3 中使用变化. 一.Vue2 中 v-model 的使用 v-model 是语法糖,本质还是父子组件间的通信.父子组件通信时有两种方式: 父 ...

  9. 微信小程序API接口封装

    @ 目录 一,让我们看一下项目目录 二,让我们熟悉一下这三个文件目的(文件名你看着办) 三,页面js中如何使用 今天的API的封装,我们拿WX小程序开发中,对它的API (wx.request)对这个 ...

  10. 初步认识express,并创建web服务器,挂载静态资源

    1.Express简介 1.1什么是Express 官方给出的概念:Express 是基于 Node.js 平台,快速.开放.极简的 Web 开发框架,官方网址 相似用途:Express 的作用和 N ...