问题的提出

上面这篇文章介绍了Spring AOP源码的核心流程,根据上面这篇文章提出的问题,我们继续来探讨一下为什么通知顺序是不一样的。

首先我们看一下新版本(5.3.5-SNAPSHOT)的通知顺序与输出结果,如下图:

顺序:Around Before After AfterReturning

输出如下:
===== Around before =====
===== Before =====
do service
===== AfterReturning =====
===== After =====
===== Around after =====

我们再来看一下旧版本(5.2.6.RELEASE)的通知顺序与输出结果,如下图:

顺序:AfterReturning After Around Before

===== Around before =====
===== Before =====
do service
===== Around after =====
===== After =====
===== AfterReturning =====
  • 我们看到不同的顺序是对结果的输出也是有影响的

  • 还有一个就是对After通知是否执行的影响,我们都知道After通知的定义是不管方法有没有抛异常,它都会执行

    但是如果我们在Before通知或者Around通知中抛一个异常,那上面的两种排序对于After通知是否执行是不一样的,具体的执行结果我们来看一下:

我们先在Before通知中抛一个异常,代码如下:

@Before("pointCut()")
public void methodBefore() {
System.out.println("===== Before =====");
throw new RuntimeException();
}

下面是不同版本的执行结果:

新版本如下:
===== Around before =====
===== Before =====
Exception in thread "main" java.lang.RuntimeException 老版本如下:
===== Around before =====
===== Before =====
===== After =====
Exception in thread "main" java.lang.RuntimeException

从上面的结果可以看出,新版本的After通知是没有执行的,而老版本的After通知是执行了的,这就是通知顺序所导致的后果,所以小伙伴们在开发时碰到此类问题时,可以往这方面想想喔~

哪一步导致了顺序的改变

我们以旧版本来debug,原因到后面就知道了,所以以下的debug流程是基于旧版本的,我们来看看这个顺序是一直不变的呢,还是在某个方法执行之后发生了变化

我们就从JdkDynamicAopProxy.invoke开始,一步一步的debug,一起来看看顺序的变化。

debug的时候,有一个极其方便的技巧,那就是:我画出的那个图标:drop frame,这个功能就是返回上一个函数,这样的话就不用重新运行然后重新打断点,就相当于一个后悔药,果然程序的世界和现实的世界是不一样的,你可以为所欲为,好,我们要做好心理准备开始debug了。

首先,我们看一下这个chain是怎么生成的,进到AdvisedSupport.getInterceptorsAndDynamicInterceptionAdvice

我们可以看到这个链通过getInterceptorsAndDynamicInterceptionAdvice方法获得,并放到了一个缓存里

进到DefaultAdvisorChainFactory.getInterceptorsAndDynamicInterceptionAdvice

看到有个advisors数组,最终的链就是根据这个数组得来的,发现这个顺序就是最终顺序,可以看到这个数组是由config.getAdvisors()得来的

进到AdvisedSupport.getAdvisors

我们可以看到返回的数组是this.advisorArray,那我们来猜一下谁会把这个数组填充好

尝试在AdvisedSupport这个类里搜索addAdvisor,发现有11处:

在这些地方都打上断点,然后重新运行,看看具体会运行到哪个位置

发现是在AdvisedSupport.addAdvisors(Advisor... advisors)这个方法:

这一步的结果还是最终顺序,我们想知道谁调用了这个方法,这时候就可以用drop frame

可以看到在AbstractAutoProxyCreator.createProxy调用了此方法:

可以看到数据是由specificInterceptors得来的,并且依旧是最终顺序,继续drop frame

可以看到在AbstractAutoProxyCreator.wrapIfNecessary调用了此方法:

可以看到调用getAdvicesAndAdvisorsForBean这个方法获得了数组

进到AbstractAdvisorAutoProxyCreator.getAdvicesAndAdvisorsForBean这个方法:

进到AbstractAdvisorAutoProxyCreator.findEligibleAdvisors这个方法:

在这里,我们发现顺序和最终顺序不一样了,终于找到你

来看一下后面的返回结果:

从上面的结果,我们可以猜测是sortAdvisors这个方法改变了顺序

进到AbstractAdvisorAutoProxyCreator.sortAdvisors这个方法:



从上图可以看出,是PartialOrder.sort(partiallyComparableAdvisors)这个方法改变了顺序

为了确认一下,我们看一下新版的顺序是怎么样的

AbstractAdvisorAutoProxyCreator.findEligibleAdvisorssortAdvisors之前的结果:

AbstractAdvisorAutoProxyCreator.findEligibleAdvisorssortAdvisors之后的结果:



经观察,新版的顺序没有变化

AbstractAdvisorAutoProxyCreator.sortAdvisors()方法

现在我们知道是哪个地方把顺序改变了,那我们就看一下PartialOrder.sort这个方法

public class PartialOrder {
public static <T extends PartialComparable> List<T> sort(List<T> objects) {
// lists of size 0 or 1 don't need any sorting
if (objects.size() < 2) {
return objects;
} // ??? we might want to optimize a few other cases of small size // ??? I don't like creating this data structure, but it does give good
// ??? separation of concerns.
List<SortObject<T>> sortList = new LinkedList<SortObject<T>>();
for (Iterator<T> i = objects.iterator(); i.hasNext();) {
addNewPartialComparable(sortList, i.next());
} // System.out.println(sortList); // now we have built our directed graph
// use a simple sort algorithm from here
// can increase efficiency later
// List ret = new ArrayList(objects.size());
final int N = objects.size();
for (int index = 0; index < N; index++) {
// System.out.println(sortList);
// System.out.println("-->" + ret); SortObject<T> leastWithNoSmallers = null; for (SortObject<T> so: sortList) {
if (so.hasNoSmallerObjects()) {
if (leastWithNoSmallers == null || so.object.fallbackCompareTo(leastWithNoSmallers.object) < 0) {
leastWithNoSmallers = so;
}
}
} if (leastWithNoSmallers == null) {
return null;
} removeFromGraph(sortList, leastWithNoSmallers);
objects.set(index, leastWithNoSmallers.object);
} return objects;
}
}

首先看一下下面的代码:

List<SortObject<T>> sortList = new LinkedList<SortObject<T>>();
for (Iterator<T> i = objects.iterator(); i.hasNext();) {
addNewPartialComparable(sortList, i.next());
}

我们从上面的代码可以看到,它为会每一个advice构造一个SortObject结构:

private static class SortObject<T extends PartialComparable> {
T object;
List<SortObject<T>> smallerObjects = new LinkedList<SortObject<T>>();
List<SortObject<T>> biggerObjects = new LinkedList<SortObject<T>>();
}

object是它自己本身,smallerObjects包含了比它优先级高的advice,biggerObjects包含了比它优先级低的advice

我们看一下构造结果是这样的:

根据这个结构,它是怎么排序的呢?看如下代码:

		final int N = objects.size();
for (int index = 0; index < N; index++) {
// System.out.println(sortList);
// System.out.println("-->" + ret); SortObject<T> leastWithNoSmallers = null; for (SortObject<T> so: sortList) {
if (so.hasNoSmallerObjects()) {
if (leastWithNoSmallers == null || so.object.fallbackCompareTo(leastWithNoSmallers.object) < 0) {
leastWithNoSmallers = so;
}
}
} if (leastWithNoSmallers == null) {
return null;
} removeFromGraph(sortList, leastWithNoSmallers);
objects.set(index, leastWithNoSmallers.object);
}
		boolean hasNoSmallerObjects() {
return smallerObjects.size() == 0;
}

每次找到smallerObjects对象size为0的对象,也就是此时它是优先级最高的

从上面的结果图可以看出,首先是ExposeInvocationInterceptor这个类,这个类是个扩展的advisor,它优先级最高,所以它的smallerObjects的大小为0,

所以它的顺序就是0,它被敲定之后,就会被移除掉,别人的smallerObjects和biggerObjects会把它移除掉,

然后AspectJAfterReturningAdvice的smallerObjects就会删除它,它的smallerObjects的size就会变成0,之后它就是顺序1

依次类推,AspectJAfterAdvice为顺序2 AspectJAroundAdvice为顺序3 最后AspectJMethodBeforeAdvice为顺序4。

那我们再来看一下SortObject是怎么生成的,看下面的代码:

public class PartialOrder {
private static <T extends PartialComparable> void addNewPartialComparable(List<SortObject<T>> graph, T o) {
SortObject<T> so = new SortObject<T>(o);
for (Iterator<SortObject<T>> i = graph.iterator(); i.hasNext();) {
SortObject<T> other = i.next();
so.addDirectedLinks(other);
}
graph.add(so);
}
} private static class SortObject<T extends PartialComparable> {
void addDirectedLinks(SortObject<T> other) {
int cmp = object.compareTo(other.object);
if (cmp == 0) {
return;
}
if (cmp > 0) {
this.smallerObjects.add(other);
other.biggerObjects.add(this);
} else {
this.biggerObjects.add(other);
other.smallerObjects.add(this);
}
}
}

从上面代码,我们可以看出,其实就是根据compareTo方法进行比较,以此来判断添加到谁的smallerObjectsbiggerObjects里面

关于compareTo的调用,最终跟踪到了如下方法(同一切面下advice优先级的比较):

class AspectJPrecedenceComparator implements Comparator<Advisor> {
private int comparePrecedenceWithinAspect(Advisor advisor1, Advisor advisor2) {
boolean oneOrOtherIsAfterAdvice =
(AspectJAopUtils.isAfterAdvice(advisor1) || AspectJAopUtils.isAfterAdvice(advisor2));
int adviceDeclarationOrderDelta = getAspectDeclarationOrder(advisor1) - getAspectDeclarationOrder(advisor2); if (oneOrOtherIsAfterAdvice) {
// the advice declared last has higher precedence
if (adviceDeclarationOrderDelta < 0) {
// advice1 was declared before advice2
// so advice1 has lower precedence
return LOWER_PRECEDENCE;
}
else if (adviceDeclarationOrderDelta == 0) {
return SAME_PRECEDENCE;
}
else {
return HIGHER_PRECEDENCE;
}
}
else {
// the advice declared first has higher precedence
if (adviceDeclarationOrderDelta < 0) {
// advice1 was declared before advice2
// so advice1 has higher precedence
return HIGHER_PRECEDENCE;
}
else if (adviceDeclarationOrderDelta == 0) {
return SAME_PRECEDENCE;
}
else {
return LOWER_PRECEDENCE;
}
}
} private int getAspectDeclarationOrder(Advisor anAdvisor) {
AspectJPrecedenceInformation precedenceInfo =
AspectJAopUtils.getAspectJPrecedenceInformationFor(anAdvisor);
if (precedenceInfo != null) {
return precedenceInfo.getDeclarationOrder();
}
else {
return 0;
}
}
} public abstract class InstantiationModelAwarePointcutAdvisorImpl {
@Override
public int getDeclarationOrder() {
return this.declarationOrder;
}
}

可以看到,其实比较的就是declarationOrder这个字段

通过查看调用链,查看在哪里赋值了这个字段,如下图:

发现是ReflectiveAspectJAdvisorFactory.getAdvisors中赋的值,如下图:

在旧版中,赋值的大小是advisors的size

由于advisor一个一个的被添加进去的,所以它们的值依次是0,1,2,3,验证结果如下图:

我们再来看一下新版的赋值:

我们看到新版的赋值都是0,这样的话,那大家的优先级都是一样的,所以就是按照默认顺序来进行执行的,

那这个默认的顺序又是怎么来的呢

通知是从切面的advice方法提取出来的,并做了一下排序,具体如下:

来看一下排序的比较器:

那么比较器是怎么比较的呢

public class ConvertingComparator<S, T> implements Comparator<S> {
@Override
public int compare(S o1, S o2) {
T c1 = this.converter.convert(o1);
T c2 = this.converter.convert(o2);
return this.comparator.compare(c1, c2);
}
} public class InstanceComparator<T> implements Comparator<T> {
@Override
public int compare(T o1, T o2) {
int i1 = getOrder(o1);
int i2 = getOrder(o2);
return (Integer.compare(i1, i2));
} private int getOrder(@Nullable T object) {
if (object != null) {
for (int i = 0; i < this.instanceOrder.length; i++) {
if (this.instanceOrder[i].isInstance(object)) {
return i;
}
}
}
return this.instanceOrder.length;
} public InstanceComparator(Class<?>... instanceOrder) {
Assert.notNull(instanceOrder, "'instanceOrder' array must not be null");
this.instanceOrder = instanceOrder;
}
} 从上面可以分析出,就是在instanceOrder这个数组里面的位置,而这个又是通过下面的构造函数赋值的
new InstanceComparator<>(Around.class, Before.class, After.class, AfterReturning.class, AfterThrowing.class)
所以就是按照这个顺序来排序的

总结

  1. 是因为导致顺序不一致的呢?是spring的版本导致的,如下图:

  2. 低版本赋予了优先级,而高版本的没有赋予优先级,采用的默认顺序,那么默认循序是什么呢,如下图:

按照自己的思路研究Spring AOP源码【2】的更多相关文章

  1. 按照自己的思路去研究Spring AOP源码【1】

    目录 一个例子 Spring AOP 原理 从@EnableAspectJAutoProxy注解入手 什么时候会创建代理对象? 方法执行时怎么实现拦截的? 总结 问题 参考 一个例子 // 定义一个切 ...

  2. 框架源码系列十:Spring AOP(AOP的核心概念回顾、Spring中AOP的用法、Spring AOP 源码学习)

    一.AOP的核心概念回顾 https://docs.spring.io/spring/docs/5.1.3.RELEASE/spring-framework-reference/core.html#a ...

  3. 最简 Spring AOP 源码分析!

    前言 最近在研究 Spring 源码,Spring 最核心的功能就是 IOC 容器和 AOP.本文定位是以最简的方式,分析 Spring AOP 源码. 基本概念 上面的思维导图能够概括了 Sprin ...

  4. 5.2 Spring5源码--Spring AOP源码分析二

    目标: 1. 什么是AOP, 什么是AspectJ 2. 什么是Spring AOP 3. Spring AOP注解版实现原理 4. Spring AOP切面原理解析 一. 认识AOP及其使用 详见博 ...

  5. 5.2 spring5源码--spring AOP源码分析二--切面的配置方式

    目标: 1. 什么是AOP, 什么是AspectJ 2. 什么是Spring AOP 3. Spring AOP注解版实现原理 4. Spring AOP切面原理解析 一. 认识AOP及其使用 详见博 ...

  6. spring AOP源码分析(三)

    在上一篇文章 spring AOP源码分析(二)中,我们已经知道如何生成一个代理对象了,那么当代理对象调用代理方法时,增强行为也就是拦截器是如何发挥作用的呢?接下来我们将介绍JDK动态代理和cglib ...

  7. Spring AOP 源码分析 - 拦截器链的执行过程

    1.简介 本篇文章是 AOP 源码分析系列文章的最后一篇文章,在前面的两篇文章中,我分别介绍了 Spring AOP 是如何为目标 bean 筛选合适的通知器,以及如何创建代理对象的过程.现在我们的得 ...

  8. Spring AOP 源码分析 - 创建代理对象

    1.简介 在上一篇文章中,我分析了 Spring 是如何为目标 bean 筛选合适的通知器的.现在通知器选好了,接下来就要通过代理的方式将通知器(Advisor)所持有的通知(Advice)织入到 b ...

  9. Spring AOP 源码分析 - 筛选合适的通知器

    1.简介 从本篇文章开始,我将会对 Spring AOP 部分的源码进行分析.本文是 Spring AOP 源码分析系列文章的第二篇,本文主要分析 Spring AOP 是如何为目标 bean 筛选出 ...

随机推荐

  1. 实验: survivor放不下的对象进入老年代

    实验一: 存活对象包含 小于survivor大小的对象 + 大于survivor的对象 private static final Integer _1MB = 1024 * 1024; /** * - ...

  2. KVM虚拟化配置

    KVM虚拟化 虚拟化概念 KVM虚拟化概念详讲 虚拟化配置 首先开启虚拟化的支持 并且增加一个50g的硬盘 free查看内存 grep -Ei 'vmx|svm' /proc/cpuinfo查看虚拟机 ...

  3. ES核心概念和原理

    ES:1:倒排索引 基于Document 关键词索引实现 . 根据关键词做索引 相关度 a. 数据结构 i. 包含关键词的Document List ii. 关键词在每个doc中出现的次数 词频 TF ...

  4. 软件漏洞--Hello-Shellcode

    软件漏洞--Hello-Shellcode 使用上一次的栈溢出的漏洞软件 可以直接通过栈溢出来修改返回值,或者要跳转的函数地址 实现一个ShellCode来跳转自己的代码 源bug软件代码 #defi ...

  5. python基础之流程控制(2)

    今天将是基础篇的最后一篇,咱们来补上最后一个内容,流程控制for循环 For 循环 一.为什么有for循环? for循环能做的事情,while循环全都可以实现,但是在某些情境下,for循环相对于whi ...

  6. Linux基础之Shell与变量

    一.提出问题 在平时的工作中,我们经常会碰到设置环境的问题,例如将应用的执行路径添加到PATH中,方便程序的执行:在Linux中更多的时候是跟shell打交道,很多通过shell启动的应用或者服务都需 ...

  7. SqlServer触发器的创建与使用

    前言 上期我们介绍了SqlServer的视图和存储过程创建与使用,这期我们介绍一下触发器. 有需要回顾的可以电梯直达看一下: SqlServer视图的创建与使用 SqlServer存储过程的创建与使用 ...

  8. Http请求状态码302,已得到html页面但未跳转?HttpServletRequest转发/HttpServletResponse重定向后,前端页面未跳转?Ajax怎么处理页面跳转?

    论断 出现此类错误,服务器端出现问题的可能性不大,大概率是前端问题. 问题概述 事情是这样的,我在用Java开发后端.前端页面使用jQuery库的 $.getJSON() 方法发送了一个Ajax请求. ...

  9. $@ 与 $* 差在哪?-- Shell十三问<第九问>

    $@ 与 $* 差在哪?-- Shell十三问<第九问> 要说 $@ 与 $* 之前,需得先从 shell script 的 positional parameter 谈起.我们都已经知道 ...

  10. 更改当前目录--cd

    pwd   显示当前所在的目录路径 cd ../ 回到上一层目录 cd ../../     回到上上层目录 cd /          回到根目录 cd ~         回到当前用户的根目录 c ...