【LeetCode】688. Knight Probability in Chessboard 解题报告(Python)
作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/
题目地址:https://leetcode.com/problems/knight-probability-in-chessboard/description/
题目描述:
On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K moves. The rows and columns are 0 indexed, so the top-left square is (0, 0), and the bottom-right square is (N-1, N-1).
A chess knight has 8 possible moves it can make, as illustrated below. Each move is two squares in a cardinal direction, then one square in an orthogonal direction.

Each time the knight is to move, it chooses one of eight possible moves uniformly at random (even if the piece would go off the chessboard) and moves there.
The knight continues moving until it has made exactly K moves or has moved off the chessboard. Return the probability that the knight remains on the board after it has stopped moving.
Example:
Input: 3, 2, 0, 0
Output: 0.0625
Explanation: There are two moves (to (1,2), (2,1)) that will keep the knight on the board.
From each of those positions, there are also two moves that will keep the knight on the board.
The total probability the knight stays on the board is 0.0625.
Note:
Nwill be between 1 and 25.Kwill be between 0 and 100.- The knight always initially starts on the board.
题目大意
有个N * N的棋盘,上面有个马,马走日字象走田嘛,找出这个马走了K步之后依然在这个棋盘上的概率。
解题方法
如果dfs的话一定会超时的,所以还是得用dp来解。
这个dp数组代表在某一轮中,这个马能到这个位置的次数。
dp更新的策略是,我们遍历棋盘的每个位置,当前的数值是能走到这个位置的在上一轮dp的数值 + 1。
这个题的对称性让这个题变得简单而又有趣。最内层的for循环对dp进行更新的时候是不用考虑索引位置的,因为对称性太美了。
时间复杂度是O(K * N ^ 2),空间复杂度是O(N ^ 2)。
注意,python2里面的/默认的是地板除,需要用float再除得到概率。
代码如下:
class Solution(object):
def knightProbability(self, N, K, r, c):
"""
:type N: int
:type K: int
:type r: int
:type c: int
:rtype: float
"""
dp = [[0 for i in range(N)] for j in range(N)]
dp[r][c] = 1
directions = [(1, 2), (1, -2), (2, 1), (2, -1), (-2, 1), (-2, -1), (-1, 2), (-1, -2)]
for k in range(K):
new_dp = [[0 for i in range(N)] for j in range(N)]
for i in range(N):
for j in range(N):
for d in directions:
x, y = i + d[0], j + d[1]
if x < 0 or x >= N or y < 0 or y >= N:
continue
new_dp[i][j] += dp[x][y]
dp = new_dp
return sum(map(sum, dp)) / float(8 ** K)
参考资料:
https://www.youtube.com/watch?v=MyJvMydR2G4
日期
2018 年 9 月 17 日 —— 早上很凉,夜里更凉
【LeetCode】688. Knight Probability in Chessboard 解题报告(Python)的更多相关文章
- LeetCode 688. Knight Probability in Chessboard
原题链接在这里:https://leetcode.com/problems/knight-probability-in-chessboard/description/ 题目: On an NxN ch ...
- LeetCode——688. Knight Probability in Chessboard
一.题目链接:https://leetcode.com/problems/knight-probability-in-chessboard/ 二.题目大意: 给定一个N*N的棋盘和一个初始坐标值(r, ...
- leetcode 576. Out of Boundary Paths 、688. Knight Probability in Chessboard
576. Out of Boundary Paths 给你一个棋盘,并放一个东西在一个起始位置,上.下.左.右移动,移动n次,一共有多少种可能移出这个棋盘 https://www.cnblogs.co ...
- 【leetcode】688. Knight Probability in Chessboard
题目如下: On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exa ...
- 688. Knight Probability in Chessboard棋子留在棋盘上的概率
[抄题]: On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exa ...
- 688. Knight Probability in Chessboard
On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...
- 【LeetCode】206. Reverse Linked List 解题报告(Python&C++&java)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 迭代 递归 日期 [LeetCode] 题目地址:h ...
- 【LeetCode】654. Maximum Binary Tree 解题报告 (Python&C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归 日期 题目地址:https://leetcode ...
- 【LeetCode】784. Letter Case Permutation 解题报告 (Python&C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 回溯法 循环 日期 题目地址:https://leet ...
随机推荐
- nginx负均
Nginx负载均衡详解 上一篇中我说啦nginx有哪些中负载均衡算法.这一结我就给如果操作配置的给大家做详细说明下. 首先给大家说下upstream这个配置的,这个配置是写一组被代理的服务器地址,然后 ...
- Linux服务器I/O性能分析-2
一.如何正确分析IO性能 1.1 BLKTRACE分析IO性能 之前的文章已经说明,要是系统发生I/O性能问题,我们常用的命令是无法精确定位问题(内核I/O调度器消耗的时间和硬件消耗的时间,这个不能作 ...
- Pyquery解析库的安装和使用
Pyquery同样是一个强大的网页解析工具,它提供了和jQuery类似的语法来解析HTML文档,支持CSS选择器,使用非常方便.GitHub:https://github.com/gawel/pyqu ...
- for no other reason than because
在狄更斯的<A Child History of England>中有段话: After some disputing among the priests, who said that a ...
- 4.2 rust 命令行参数
从命令行读取参数 use std::env; fn main() { let args: Vec<String> = env::args().collect(); println!(&q ...
- Linux基础命令---enable开启shell命令
enable enable指令用来关闭或者激活shell内部命令.此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.Fedora. 1.语法 enable [-a] ...
- [学习总结]9、Android-Universal-Image-Loader 图片异步加载类库的使用(超详细配置)
这个图片异步加载并缓存的类已经被很多开发者所使用,是最常用的几个开源库之一,主流的应用,随便反编译几个火的项目,都可以见到它的身影. 可是有的人并不知道如何去使用这库如何进行配置,网上查到的信息对于刚 ...
- 运维笔记之yum,rpm,挂载,磁盘管理和raid详解
yum 与 rpm centos6,7 主要有rpm和yum这两种包管理软件,两种包的管理各有用处,其中最主要区别是: yum使用简单但需要联网,yum会去网上的yum包源去获取所需要的软件包.而r ...
- Java 使用slf4j记录日志
引入依赖 <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12< ...
- 微信浏览器打开H5页面右上角隐藏转发功能
js设置转发开关 document.addEventListener('WeixinJSBridgeReady', function onBridgeReady() { WeixinJSBridge. ...