作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/


题目地址:https://leetcode.com/problems/longest-palindromic-subsequence/description/

题目描述

Given a string s, find the longest palindromic subsequence’s length in s. You may assume that the maximum length of s is 1000.

Example 1:

Input:

"bbbab"
Output:
4
One possible longest palindromic subsequence is "bbbb".

Example 2:

Input:

"cbbd"
Output:
2
One possible longest palindromic subsequence is "bb".

题目大意

找出一个字符串中最长的回文序列的长度。注意序列可以是不连续的,而子字符串是连续的。

解题思路

做完昨天的每日一题 446. 等差数列划分 II - 子序列 之后,相信大家对于子序列问题的套路已经更加了解了。子序列问题不能用滑动窗口了,可以用动态规划来解决。子序列问题的经典题目就是 300. 最长递增子序列,务必掌握。

先从整体思路说起。

子序列问题,由于是数组中的非连续的一个序列,使用动态规划求解时,避免不了二重循环:第一重循环是求解动态规划的每一个状态

d

p

[

i

]

,

(

0

<

=

i

<

=

N

)

dp[i], (0 <= i <= N)

dp[i],(0<=i<=N) ,第二重循环是向前寻找上一个子序列的结尾

j

,

(

0

<

=

j

<

i

)

j ,(0 <= j < i)

j,(0<=j<i)$ 来和

i

i

i 一起构成满足题意的新的子序列。

  • 对于「最长递增子序列」问题,我们对

    i

    ,

    j

    i, j

    i,j 的要求是

    n

    u

    m

    s

    [

    i

    ]

    >

    n

    u

    m

    s

    [

    j

    ]

    nums[i] > nums[j]

    nums[i]>nums[j],即递增;

  • 对于「能构成等差数列的子序列」问题,我们对

    i

    ,

    j

    i, j

    i,j 的要求是

    n

    u

    m

    [

    i

    ]

    num[i]

    num[i] 可以在

    n

    u

    m

    s

    [

    j

    ]

    nums[j]

    nums[j] 的基础上构成等差数列。

  • 对于「最长回文子序列」问题,我们对

    i

    ,

    j

    i, j

    i,j 本身的取值没有要求,但是希望能够成最长的回文子串。

在动态规划问题中,我们找到一个符合条件的

j

j

j ,然后就可以通过状态转移方程由

d

p

[

j

]

dp[j]

dp[j] 推导出

d

p

[

i

]

dp[i]

dp[i] 。

然后,我理一下本题的解法。

当已知一个序列是回文时,在其首尾添加元素后的序列存在两种情况:

  1. 首尾元素相等,则最长回文的长度 + 2;
  2. 首尾元素不相等,则最长回文序列长度为 仅添加首元素时的最长回文长度 与 仅添加尾元素时的最长回文长度 的最大值。

状态定义

d

p

[

i

]

[

j

]

dp[i][j]

dp[i][j] 表示

s

[

i

j

]

s[i…j]

s[i…j] 中的最长回文序列长度。

状态转移方程

  1. i

    >

    j

    i > j

    i>j,

    d

    p

    [

    i

    ]

    [

    j

    ]

    =

    0

    dp[i][j] = 0

    dp[i][j]=0;

  2. i

    =

    =

    j

    i == j

    i==j,

    d

    p

    [

    i

    ]

    [

    j

    ]

    =

    1

    dp[i][j] = 1

    dp[i][j]=1;

  3. i

    <

    j

    i < j

    i<j 且

    s

    [

    i

    ]

    =

    =

    s

    [

    j

    ]

    s[i] == s[j]

    s[i]==s[j],

    d

    p

    [

    i

    ]

    [

    j

    ]

    =

    d

    p

    [

    i

    +

    1

    ]

    [

    j

    1

    ]

    +

    2

    dp[i][j] = dp[i + 1][j - 1] + 2

    dp[i][j]=dp[i+1][j−1]+2;

  4. i

    <

    j

    i < j

    i<j 且

    s

    [

    i

    ]

    =

    s

    [

    j

    ]

    s[i]!= s[j]

    s[i]!=s[j],

    d

    p

    [

    i

    ]

    [

    j

    ]

    =

    m

    a

    x

    (

    d

    p

    [

    i

    +

    1

    ]

    [

    j

    ]

    d

    p

    [

    i

    ]

    [

    j

    1

    ]

    )

    dp[i][j] = max(dp[i + 1][j],dp[i][j - 1])

    dp[i][j]=max(dp[i+1][j],dp[i][j−1]);

遍历顺序
从状态转移方程可以看出,计算

d

p

[

i

]

[

j

]

dp[i][j]

dp[i][j] 时需要用到

d

p

[

i

+

1

]

[

j

1

]

dp[i+1][j - 1]

dp[i+1][j−1] 和

d

p

[

i

+

1

]

[

j

]

dp[i + 1][j]

dp[i+1][j],所以对于

i

i

i 的遍历应该从后向前;对于

j

j

j 的遍历应该从前向后。

返回结果
最后返回

d

p

[

0

]

[

s

.

l

e

n

g

t

h

(

)

1

]

dp[0][s.length() - 1]

dp[0][s.length()−1]。

代码

提供了三种语言的代码。

java 代码

class Solution {
public int longestPalindromeSubseq(String s) {
int size = s.length();
int[][] dp = new int[size][size];
for(int i = size - 1; i >= 0; i--){
dp[i][i] = 1;
for(int j = i + 1; j < size; j++){
if(s.charAt(i) == s.charAt(j)){
dp[i][j] = dp[i + 1][j - 1] + 2;
}else{
dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
return dp[0][size - 1];
}
}

C++代码:

class Solution {
public:
int longestPalindromeSubseq(string s) {
int size = s.size();
vector<vector<int>> dp(size, vector<int>(size, 0));
for(int i = size - 1; i >= 0; i--){
dp[i][i] = 1;
for(int j = i + 1; j < size; j++){
if(s[i] == s[j]){
dp[i][j] = dp[i + 1][j - 1] + 2;
}else{
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
return dp[0][size - 1];
}
};

python 代码:

class Solution:
def longestPalindromeSubseq(self, s):
n = len(s)
dp = [[0] * n for _ in range(n)]
for i in range(n - 1, -1, -1):
dp[i][i] = 1
for j in range(i + 1, n):
if s[i] == s[j]:
dp[i][j] = dp[i + 1][j - 1] + 2
else:
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1])
return dp[0][n - 1]
  • 时间复杂度:

    O

    (

    N

    2

    )

    O(N^2)

    O(N2)

  • 空间复杂度:

    O

    (

    N

    2

    )

    O(N^2)

    O(N2)

刷题心得

子序列的动态规划解法:两重循环。其实就看对于每个

i

i

i,当找到满足题目要求的

j

j

j 的时候,状态转移方程怎么变化。

参考:http://blog.csdn.net/camellhf/article/details/70337501

日期

2018 年 3 月 15 日 --雾霾消散,春光明媚
2021 年 8 月 12 日——对面在装修,很吵

【LeetCode】516. Longest Palindromic Subsequence 最长回文子序列的更多相关文章

  1. [LeetCode] 516. Longest Palindromic Subsequence 最长回文子序列

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

  2. 516 Longest Palindromic Subsequence 最长回文子序列

    给定一个字符串s,找到其中最长的回文子序列.可以假设s的最大长度为1000. 详见:https://leetcode.com/problems/longest-palindromic-subseque ...

  3. [LeetCode] Longest Palindromic Subsequence 最长回文子序列

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

  4. Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)

    Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...

  5. [LeetCode] 5. Longest Palindromic Substring 最长回文子串

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  6. [leetcode]5. Longest Palindromic Substring最长回文子串

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  7. LN : leetcode 516 Longest Palindromic Subsequence

    lc 516 Longest Palindromic Subsequence 516 Longest Palindromic Subsequence Given a string s, find th ...

  8. 516. Longest Palindromic Subsequence最长的不连续回文串的长度

    [抄题]: Given a string s, find the longest palindromic subsequence's length in s. You may assume that ...

  9. [leetcode]516. Longest Palindromic Subsequence最大回文子序列

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

随机推荐

  1. gg=G

    1.代码格式化对齐 2.直接按下ESE模式下就可以来执行了

  2. 第二个基础框架 — spring — xml版,没用注解 — 更新完毕

    1.什么是spring? 老规矩:百度百科一手 这上面说得太多了,我来提炼一下: spring就是一个轻量级的控制反转( IOC ) 和 面向切面编程( AOP ) 的容量框架.总的来说:本质就是对j ...

  3. A Child's History of England.35

    The other two clung to the yard for some hours. At length the young noble said faintly, 'I am exhaus ...

  4. C++构造函数和析构函数初步认识

    构造函数 1.构造函数与类名相同,是特殊的公有成员函数.2.构造函数无函数返回类型说明,实际上构造函数是有返回值的,其返回值类型即为构造函数所构建到的对象.3.当新对象被建立时,构造函数便被自动调用, ...

  5. 【分布式】Zookeeper客户端基本的使用

    与mysql.redis等软件一样,zookeeper的软件包中也提供了客户端程序用于对服务器上的数据进行操作.本节我们就来学习zookeeper客户端的使用方法.不过在详细讲解zk客户端的使用方法之 ...

  6. SpringMVC responseBody注解分析

    @responsebody表示该方法的返回结果直接写入HTTP response body中一般在异步获取数据时使用,在使用@RequestMapping后,返回值通常解析为跳转路径,加上@respo ...

  7. Linux基础命令---httpd守护进程

    httpd httpd是apache超文本传输协议的主程序,它被设计成一个独立运行的守护进程.httpd会建立一个线程池来处理http请求. 此命令的适用范围:RedHat.RHEL.Ubuntu.C ...

  8. MyBatis(1):实现MyBatis程序

    一,MyBatis介绍 MyBatis是一个支持普通SQL查询,存储过程和高级映射的优秀持久层框架.MyBatis消除了几乎所有的JDBC代码和参数的手工设置以及对结果集的检索封装.MyBatis可以 ...

  9. Hadoop生态圈学习-1(理论基础)

    一.大数据技术产生的背景 1. 计算机和信息技术(尤其是移动互联网)的迅猛发展和普及,行业应用系统的规模迅速扩大(用户数量和应用场景,比如facebook.淘宝.微信.银联.12306等),行业应用所 ...

  10. matplotlib animation

    import numpy as np from matplotlib import pyplot as plt from matplotlib import animation fig, ax = p ...