作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/


题目地址:https://leetcode.com/problems/longest-palindromic-subsequence/description/

题目描述

Given a string s, find the longest palindromic subsequence’s length in s. You may assume that the maximum length of s is 1000.

Example 1:

Input:

"bbbab"
Output:
4
One possible longest palindromic subsequence is "bbbb".

Example 2:

Input:

"cbbd"
Output:
2
One possible longest palindromic subsequence is "bb".

题目大意

找出一个字符串中最长的回文序列的长度。注意序列可以是不连续的,而子字符串是连续的。

解题思路

做完昨天的每日一题 446. 等差数列划分 II - 子序列 之后,相信大家对于子序列问题的套路已经更加了解了。子序列问题不能用滑动窗口了,可以用动态规划来解决。子序列问题的经典题目就是 300. 最长递增子序列,务必掌握。

先从整体思路说起。

子序列问题,由于是数组中的非连续的一个序列,使用动态规划求解时,避免不了二重循环:第一重循环是求解动态规划的每一个状态

d

p

[

i

]

,

(

0

<

=

i

<

=

N

)

dp[i], (0 <= i <= N)

dp[i],(0<=i<=N) ,第二重循环是向前寻找上一个子序列的结尾

j

,

(

0

<

=

j

<

i

)

j ,(0 <= j < i)

j,(0<=j<i)$ 来和

i

i

i 一起构成满足题意的新的子序列。

  • 对于「最长递增子序列」问题,我们对

    i

    ,

    j

    i, j

    i,j 的要求是

    n

    u

    m

    s

    [

    i

    ]

    >

    n

    u

    m

    s

    [

    j

    ]

    nums[i] > nums[j]

    nums[i]>nums[j],即递增;

  • 对于「能构成等差数列的子序列」问题,我们对

    i

    ,

    j

    i, j

    i,j 的要求是

    n

    u

    m

    [

    i

    ]

    num[i]

    num[i] 可以在

    n

    u

    m

    s

    [

    j

    ]

    nums[j]

    nums[j] 的基础上构成等差数列。

  • 对于「最长回文子序列」问题,我们对

    i

    ,

    j

    i, j

    i,j 本身的取值没有要求,但是希望能够成最长的回文子串。

在动态规划问题中,我们找到一个符合条件的

j

j

j ,然后就可以通过状态转移方程由

d

p

[

j

]

dp[j]

dp[j] 推导出

d

p

[

i

]

dp[i]

dp[i] 。

然后,我理一下本题的解法。

当已知一个序列是回文时,在其首尾添加元素后的序列存在两种情况:

  1. 首尾元素相等,则最长回文的长度 + 2;
  2. 首尾元素不相等,则最长回文序列长度为 仅添加首元素时的最长回文长度 与 仅添加尾元素时的最长回文长度 的最大值。

状态定义

d

p

[

i

]

[

j

]

dp[i][j]

dp[i][j] 表示

s

[

i

j

]

s[i…j]

s[i…j] 中的最长回文序列长度。

状态转移方程

  1. i

    >

    j

    i > j

    i>j,

    d

    p

    [

    i

    ]

    [

    j

    ]

    =

    0

    dp[i][j] = 0

    dp[i][j]=0;

  2. i

    =

    =

    j

    i == j

    i==j,

    d

    p

    [

    i

    ]

    [

    j

    ]

    =

    1

    dp[i][j] = 1

    dp[i][j]=1;

  3. i

    <

    j

    i < j

    i<j 且

    s

    [

    i

    ]

    =

    =

    s

    [

    j

    ]

    s[i] == s[j]

    s[i]==s[j],

    d

    p

    [

    i

    ]

    [

    j

    ]

    =

    d

    p

    [

    i

    +

    1

    ]

    [

    j

    1

    ]

    +

    2

    dp[i][j] = dp[i + 1][j - 1] + 2

    dp[i][j]=dp[i+1][j−1]+2;

  4. i

    <

    j

    i < j

    i<j 且

    s

    [

    i

    ]

    =

    s

    [

    j

    ]

    s[i]!= s[j]

    s[i]!=s[j],

    d

    p

    [

    i

    ]

    [

    j

    ]

    =

    m

    a

    x

    (

    d

    p

    [

    i

    +

    1

    ]

    [

    j

    ]

    d

    p

    [

    i

    ]

    [

    j

    1

    ]

    )

    dp[i][j] = max(dp[i + 1][j],dp[i][j - 1])

    dp[i][j]=max(dp[i+1][j],dp[i][j−1]);

遍历顺序
从状态转移方程可以看出,计算

d

p

[

i

]

[

j

]

dp[i][j]

dp[i][j] 时需要用到

d

p

[

i

+

1

]

[

j

1

]

dp[i+1][j - 1]

dp[i+1][j−1] 和

d

p

[

i

+

1

]

[

j

]

dp[i + 1][j]

dp[i+1][j],所以对于

i

i

i 的遍历应该从后向前;对于

j

j

j 的遍历应该从前向后。

返回结果
最后返回

d

p

[

0

]

[

s

.

l

e

n

g

t

h

(

)

1

]

dp[0][s.length() - 1]

dp[0][s.length()−1]。

代码

提供了三种语言的代码。

java 代码

class Solution {
public int longestPalindromeSubseq(String s) {
int size = s.length();
int[][] dp = new int[size][size];
for(int i = size - 1; i >= 0; i--){
dp[i][i] = 1;
for(int j = i + 1; j < size; j++){
if(s.charAt(i) == s.charAt(j)){
dp[i][j] = dp[i + 1][j - 1] + 2;
}else{
dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
return dp[0][size - 1];
}
}

C++代码:

class Solution {
public:
int longestPalindromeSubseq(string s) {
int size = s.size();
vector<vector<int>> dp(size, vector<int>(size, 0));
for(int i = size - 1; i >= 0; i--){
dp[i][i] = 1;
for(int j = i + 1; j < size; j++){
if(s[i] == s[j]){
dp[i][j] = dp[i + 1][j - 1] + 2;
}else{
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
return dp[0][size - 1];
}
};

python 代码:

class Solution:
def longestPalindromeSubseq(self, s):
n = len(s)
dp = [[0] * n for _ in range(n)]
for i in range(n - 1, -1, -1):
dp[i][i] = 1
for j in range(i + 1, n):
if s[i] == s[j]:
dp[i][j] = dp[i + 1][j - 1] + 2
else:
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1])
return dp[0][n - 1]
  • 时间复杂度:

    O

    (

    N

    2

    )

    O(N^2)

    O(N2)

  • 空间复杂度:

    O

    (

    N

    2

    )

    O(N^2)

    O(N2)

刷题心得

子序列的动态规划解法:两重循环。其实就看对于每个

i

i

i,当找到满足题目要求的

j

j

j 的时候,状态转移方程怎么变化。

参考:http://blog.csdn.net/camellhf/article/details/70337501

日期

2018 年 3 月 15 日 --雾霾消散,春光明媚
2021 年 8 月 12 日——对面在装修,很吵

【LeetCode】516. Longest Palindromic Subsequence 最长回文子序列的更多相关文章

  1. [LeetCode] 516. Longest Palindromic Subsequence 最长回文子序列

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

  2. 516 Longest Palindromic Subsequence 最长回文子序列

    给定一个字符串s,找到其中最长的回文子序列.可以假设s的最大长度为1000. 详见:https://leetcode.com/problems/longest-palindromic-subseque ...

  3. [LeetCode] Longest Palindromic Subsequence 最长回文子序列

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

  4. Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)

    Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...

  5. [LeetCode] 5. Longest Palindromic Substring 最长回文子串

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  6. [leetcode]5. Longest Palindromic Substring最长回文子串

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  7. LN : leetcode 516 Longest Palindromic Subsequence

    lc 516 Longest Palindromic Subsequence 516 Longest Palindromic Subsequence Given a string s, find th ...

  8. 516. Longest Palindromic Subsequence最长的不连续回文串的长度

    [抄题]: Given a string s, find the longest palindromic subsequence's length in s. You may assume that ...

  9. [leetcode]516. Longest Palindromic Subsequence最大回文子序列

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

随机推荐

  1. 基于tp5免费开源的后台管理系统

    基于tp5免费开源的后台管理系统 可以自定义后台菜单,模块等. 后台模板用的是:AdminLTE 简单的后台基础管理系统,有兴趣开源看看 代码地址:https://github.com/mengzhi ...

  2. kubernetes部署kube-scheduler服务

    同样的分非认证授权和认证授权: 非认证授权: cat > /lib/systemd/system/kube-scheduler.service <<EOF [Unit] Descri ...

  3. FFmpeg笔记:使用MSVC工具链编译Windows版本静态库、动态库

    2019年3月开始,为了将音视频编解码功能集成到Cocos2d-x中,开始接触到FFmpeg: 当时开发环境还在Mac下,编译FFmpeg相比现在用Windows平台要方便的多: 最近,公司内部有个U ...

  4. 百页 PPT BPF 技术全览 - 深入浅出 BPF 技术

    eBPF 从创建开始,短短数年(7年),至今就已经被认为是过去 50 年来操作系统最大的变更,那么 eBPF 技术到底给我们带来了什么样的超能力,以至于得到如此高的评价? 本文从以下内容入手,对 eB ...

  5. 【模板】缩点(Tarjan算法)/洛谷P3387

    题目链接 https://www.luogu.com.cn/problem/P3387 题目大意 给定一个 \(n\) 个点 \(m\) 条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之 ...

  6. C#页面缓存设置

    protected void Page_Load(object sender, EventArgs e) { if (!IsPostBack) { Sessioninfo(); } Session.R ...

  7. 学习java的第二十六天

    一.今日收获 1.java完全学习手册第三章算法的3.2排序,比较了跟c语言排序上的不同 2.观看哔哩哔哩上的教学视频 二.今日问题 1.快速排序法的运行调试多次 2.哔哩哔哩教学视频的一些术语不太理 ...

  8. The Go tools for Windows + Assembler很好玩

    我想用python做个tiny BASIC编译器.赋值和加减乘除,IF和FOR. 语法分析python有ply包,用ply.lex和ply.yacc做个计算器很简单,我已经做了. 做个解释器应该也不难 ...

  9. 源码分析-Consumer

    消息消费概述 消息消费以组的模式开展,一个消费组内可以包含多个消费者,每一个消费者组可订阅多个主题,消费组之间有集群模式和广播模式两种消费模式. 集群模式,主题下的同一条消息只允许被其中一个消费者消费 ...

  10. Oracle decode和case的区别

    case在SQL中有两种写法,先建立一个表create table salgrade(grade int, sal int);insert into salgrade values(1,1000);i ...