From: https://liudongdong1.github.io/

a. 有序调整:等间隔调整(Step),按需调整学习率(MultiStep),指数衰减调整(Exponential)和 余弦退火CosineAnnealing。

b. 自适应调整:自适应调整学习率 ReduceLROnPlateau。

c. 自定义调整:自定义调整学习率 LambdaLR。

#得到当前学习率
lr = next(iter(optimizer.param_groups))['lr']
#multiple learning rates for different layers.
all_lr = []
for param_group in optimizer.param_groups:
all_lr.append(param_group['lr']) #学习率衰减
#Reduce learning rate when validation accuarcy plateau.
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience=5, verbose=True)
for t in range(0, 80):
train(...); val(...)
scheduler.step(val_acc)
#Cosine annealing learning rate.
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=80)
#Reduce learning rate by 10 at given epochs.
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[50, 70], gamma=0.1)
for t in range(0, 80):
scheduler.step()
train(...); val(...)
#Learning rate warmup by 10 epochs.
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda t: t / 10)
for t in range(0, 10):
scheduler.step()
train(...); val(...)

1. 针对不同的层

model = torchvision.models.resnet101(pretrained=True)
large_lr_layers = list(map(id,model.fc.parameters()))
small_lr_layers = filter(lambda p:id(p) not in large_lr_layers,model.parameters())
optimizer = torch.optim.SGD([
{"params":large_lr_layers},
{"params":small_lr_layers,"lr":1e-4}
],lr = 1e-2,momenum=0.9)

2. 等间隔调整学习率 StepLR

torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)
  • step_size(int)- 学习率下降间隔数,若为 30,则会在 30、 60、 90…个 step 时,将学习率调整为 lr*gamma
  • gamma(float)- 学习率调整倍数,默认为 0.1 倍,即下降 10 倍。
  • last_epoch(int)- 上一个 epoch 数,这个变量用来指示学习率是否需要调整。当last_epoch 符合设定的间隔时,就会对学习率进行调整。当为-1 时,学习率设置为初始值。

调整倍数为 gamma 倍,调整间隔为 step_size。间隔单位是step。需要注意的是, step 通常是指 epoch,不要弄成 iteration 了。

3. 按需调整学习率 MultiStepLR

torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1)
  • milestones(list)- 一个 list,每一个元素代表何时调整学习率 list 元素必须是递增的。如 milestones=[30,80,120]
  • gamma(float)- 学习率调整倍数,默认为 0.1 倍,即下降 10 倍。

按设定的间隔调整学习率。这个方法适合后期调试使用,观察 loss 曲线,为每个实验定制学习率调整时机。

4. 指数衰减调整学习率 ExponentialLR

torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma, last_epoch=-1)

gamma- 学习率调整倍数的底,指数为 epoch,即 gamma**epoch

5. 余弦退火调整学习率 CosineAnnealingLR

torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=-1)
  • T_max(int)- 一次学习率周期的迭代次数,即 T_max 个 epoch 之后重新设置学习率
  • eta_min(float)- 最小学习率,即在一个周期中,学习率最小会下降到 eta_min,默认值为 0。

以余弦函数为周期,并在每个周期最大值时重新设置学习率。以初始学习率为最大学习率,以 2 ∗ T m a x 2*Tmax2∗Tmax 为周期,在一个周期内先下降,后上升。

epochs = 60
optimizer = optim.SGD(model.parameters(),lr = config.lr,momentum=0.9,weight_decay=1e-4)
scheduler = lr_scheduler.CosineAnnealingLR(optimizer,T_max = (epochs // 9) + 1)
for epoch in range(epochs):
scheduler.step(epoch)

6. 自适应调整学习率 ReduceLROnPlateau

torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)
  • mode(str)- 模式选择,有 min 和 max 两种模式, min 表示当指标不再降低(如监测loss) max 表示当指标不再升高(如监测 accuracy)
  • factor(float)- 学习率调整倍数(等同于其它方法的 gamma),即学习率更新为 lr = lr * factor
  • patience(int)- 忍受该指标多少个 step 不变化,当忍无可忍时,调整学习率
  • verbose(bool)- 是否打印学习率信息, print(‘Epoch {:5d}: reducing learning rate of group {} to {:.4e}.’.format(epoch, i, new_lr))
  • threshold_mode(str)- 选择判断指标是否达最优的模式,有两种模式, rel 和 abs。

    当 threshold_mode == rel,并且 mode == max 时, dynamic_threshold = best * ( 1 +threshold );

    当 threshold_mode == rel,并且 mode == min 时, dynamic_threshold = best * ( 1 -threshold );

    当 threshold_mode == abs,并且 mode== max 时, dynamic_threshold = best + threshold ;

    当 threshold_mode == rel,并且 mode == max 时, dynamic_threshold = best - threshold;
  • threshold(float)- 配合 threshold_mode 使用。
  • cooldown(int)- “冷却时间“,当调整学习率之后,让学习率调整策略冷静一下,让模型再训练一段时间,再重启监测模式。
  • min_lr(float or list)- 学习率下限,可为 float,或者 list,当有多个参数组时,可用 list 进行设置。
  • eps(float)- 学习率衰减的最小值,当学习率变化小于 eps 时,则不调整学习率。
optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)scheduler = ReduceLROnPlateau(optimizer, 'max',verbose=1,patience=3)for epoch in range(10):    train(...)    val_acc = validate(...)    # 降低学习率需要在给出 val_acc 之后    scheduler.step(val_acc)

7. 自定义调整学习率 LambdaLR

torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1)
  • lr_lambda(function or list)- 一个计算学习率调整倍数的函数,输入通常为 step,当有多个参数组时,设为 list。

8. 手动设置

def adjust_learning_rate(optimizer, lr):    for param_group in optimizer.param_groups:        param_group['lr'] = lrfor epoch in range(60):            lr = 30e-5    if epoch > 25:        lr = 15e-5    if epoch > 30:        lr = 7.5e-5    if epoch > 35:        lr = 3e-5    if epoch > 40:        lr = 1e-5    adjust_learning_rate(optimizer, lr)

【AI】Pytorch_LearningRate的更多相关文章

  1. 【AI】Exponential Stochastic Cellular Automata for Massively Parallel Inference - 大规模并行推理的指数随机元胞自动机

    [论文标题]Exponential Stochastic Cellular Automata for Massively Parallel Inference     (19th-ICAIS,PMLR ...

  2. 【AI】【人工智能】【计算机】人工智能工程技术人员等职业信息公示

    人社厅发[2019]48号 各省.自治区.直辖市及新疆生产建设兵团人力资源社会保障厅(局).市场监管局.统计局,国务院各部门.各直属机构.各中央企业.有关社会组织人事劳动保障工作机构,中央军委政治工作 ...

  3. 【AI】Android Pie中引入的AI功能

    前言 “无AI,不未来”,绝对不是一句豪情壮语,AI早已进入到了我们生活当中.去年Google发布的Android Pie系统在AI功能方面就做了重大革新,本文就对Google在新系统中引入的AI功能 ...

  4. 【AI】Computing Machinery and Intelligence - 计算机器与智能

    [论文标题] Computing Machinery and Intelligence (1950) [论文作者] A. M. Turing (Alan Mathison Turing) [论文链接] ...

  5. 【AI】【计算机】【中国人工智能学会通讯】【学会通讯2019年第01期】中国人工智能学会重磅发布 《2018 人工智能产业创新评估白皮书》

    封面: 中国人工智能学会重磅发布 <2018 人工智能产业创新评估白皮书> < 2018 人工智能产业创新评估白皮书>由中国人工智能学会.国家工信安全中心.华夏幸福产业研究院. ...

  6. 【AI】蒙特卡洛搜索树

    http://jeffbradberry.com/posts/2015/09/intro-to-monte-carlo-tree-search/ 蒙特卡洛方法与随机优化: http://iacs-co ...

  7. 【AI】PaddlePaddle-Docker运行

    1.参考官方安装Docker环境,使用一键安装包安装 https://www.jianshu.com/p/b2766173d754 http://www.paddlepaddle.org/docume ...

  8. 【AI】神经网络基本词汇

    neural networks 神经网络activation function 激活函数hyperbolic tangent 双曲正切函数bias units 偏置项activation 激活值for ...

  9. 【AI】基本概念-准确率、精准率、召回率的理解

    样本全集:TP+FP+FN+TN TP:样本为正,预测结果为正 FP:样本为负,预测结果为正 TN:样本为负,预测结果为负 FN:样本为正,预测结果为负 准确率(accuracy):(TP+TN)/ ...

随机推荐

  1. http、tcp和socket简单理解

    1.Http属于应用层,主要解决如何包装数据. 2.Tcp属于传输层,主要解决数据如何在网络上传输. 3.Socket是对TCP/IP协议的封装,Socket本身并不是协议,而是一个调用接口(API) ...

  2. Linux | 搜索命令

    grep grep 命令用于在文本中执行关键词搜索,并显示匹配的结果,格式:grep[选项][文本] grep命令的参数及其作用 参数 作用 -b 将可执行文件当作文本文件对待 -c 公显示找到的行数 ...

  3. ARTS第十周

     之前忘了发布 1.Algorithm:每周至少做一个 leetcode 的算法题2.Review:阅读并点评至少一篇英文技术文章3.Tip:学习至少一个技术技巧4.Share:分享一篇有观点和思考的 ...

  4. XXE学习(待更新)

    XXE基础 XXE(XMl External Injection),即XML外部实体注入漏洞. XXE漏洞发生在应用程序解析XML输入时,没有禁止外部实体得加载,导致可以加载恶意外部文件,造成文件读取 ...

  5. CTF-wtc_rsa_bbq-writeup

    wtc_rsa_bbq 题目信息: 附件: cry200 解题思路: 1.观察cry200文件,发现该文件是一个二进制文件,用二进制模式查看,发现开头为50 4B 03 04,判断该文件是一个zip文 ...

  6. 学习总结 NCRE二级和三级

    NCRE二级C语言 证书 考试感想 2016年考的认证,5年过去了,"光阴荏苒真容易".趁着心有余力有余的时候,把一些个人的体会分享给大家,希望后来人能平稳前行. Windows ...

  7. 查看JVM默认参数及微调JVM启动参数

    目录 查看某个JVM进程堆内存信息 微调JVM启动参数 查看JVM的一些默认参数 参考廖雪峰老师的这篇 JVM调优的正确姿势: https://www.liaoxuefeng.com/article/ ...

  8. 第十六篇 -- QListWidget与QToolButton(功能)

    效果图: 添加的部分,就是对几个action绑定了槽函数,完成相应的功能. listWidget操作的都是item,添加一个item,删除一个item,插入一个item等等.那么只需要知道item的几 ...

  9. Python基础之读取ini文件

    基本使用方法 第一步:准备一份INI文件.如test1.ini [ITEMS] item1=1 item2=2 item3=3 item4=4 [ITEM1] test1=aaa [ITEM2] te ...

  10. 第四篇--git 上传可能出现的问题

    1. Q:fatal: TaskCanceledException encountered. A task was canceled. A:$ git config --system --unset ...