【AI】Pytorch_LearningRate
From: https://liudongdong1.github.io/
a. 有序调整:等间隔调整(Step),按需调整学习率(MultiStep),指数衰减调整(Exponential)和 余弦退火CosineAnnealing。
b. 自适应调整:自适应调整学习率 ReduceLROnPlateau。
c. 自定义调整:自定义调整学习率 LambdaLR。
#得到当前学习率
lr = next(iter(optimizer.param_groups))['lr']
#multiple learning rates for different layers.
all_lr = []
for param_group in optimizer.param_groups:
all_lr.append(param_group['lr'])
#学习率衰减
#Reduce learning rate when validation accuarcy plateau.
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience=5, verbose=True)
for t in range(0, 80):
train(...); val(...)
scheduler.step(val_acc)
#Cosine annealing learning rate.
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=80)
#Reduce learning rate by 10 at given epochs.
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[50, 70], gamma=0.1)
for t in range(0, 80):
scheduler.step()
train(...); val(...)
#Learning rate warmup by 10 epochs.
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda t: t / 10)
for t in range(0, 10):
scheduler.step()
train(...); val(...)
1. 针对不同的层
model = torchvision.models.resnet101(pretrained=True)
large_lr_layers = list(map(id,model.fc.parameters()))
small_lr_layers = filter(lambda p:id(p) not in large_lr_layers,model.parameters())
optimizer = torch.optim.SGD([
{"params":large_lr_layers},
{"params":small_lr_layers,"lr":1e-4}
],lr = 1e-2,momenum=0.9)
2. 等间隔调整学习率 StepLR
torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)
step_size(int)- 学习率下降间隔数,若为 30,则会在 30、 60、 90…个 step 时,将学习率调整为lr*gamma。- gamma(float)- 学习率调整倍数,默认为 0.1 倍,即下降 10 倍。
- last_epoch(int)- 上一个 epoch 数,这个变量用来
指示学习率是否需要调整。当last_epoch 符合设定的间隔时,就会对学习率进行调整。当为-1 时,学习率设置为初始值。调整倍数为 gamma 倍,调整间隔为 step_size。间隔单位是step。需要注意的是, step 通常是指 epoch,不要弄成 iteration 了。
3. 按需调整学习率 MultiStepLR
torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1)
- milestones(list)- 一个 list,
每一个元素代表何时调整学习率,list 元素必须是递增的。如 milestones=[30,80,120]- gamma(float)- 学习率调整倍数,默认为 0.1 倍,即下降 10 倍。
按设定的间隔调整学习率。这个方法适合后期调试使用,观察 loss 曲线,为每个实验定制学习率调整时机。
4. 指数衰减调整学习率 ExponentialLR
torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma, last_epoch=-1)
gamma- 学习率调整倍数的底,指数为 epoch,即 gamma**epoch
5. 余弦退火调整学习率 CosineAnnealingLR
torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=-1)
- T_max(int)- 一次学习率周期的迭代次数,即
T_max 个 epoch 之后重新设置学习率。- eta_min(float)- 最小学习率,即在一个周期中,
学习率最小会下降到 eta_min,默认值为 0。以余弦函数为周期,并在每个周期最大值时重新设置学习率。以初始学习率为最大学习率,以 2 ∗ T m a x 2*Tmax2∗Tmax 为周期,在一个周期内先下降,后上升。
epochs = 60
optimizer = optim.SGD(model.parameters(),lr = config.lr,momentum=0.9,weight_decay=1e-4)
scheduler = lr_scheduler.CosineAnnealingLR(optimizer,T_max = (epochs // 9) + 1)
for epoch in range(epochs):
scheduler.step(epoch)
6. 自适应调整学习率 ReduceLROnPlateau
torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)
- mode(str)- 模式选择,有 min 和 max 两种模式,
min 表示当指标不再降低(如监测loss),max 表示当指标不再升高(如监测 accuracy)。- factor(float)- 学习率调整倍数(等同于其它方法的 gamma),即学习率更新为
lr = lr * factor- patience(int)-
忍受该指标多少个 step 不变化,当忍无可忍时,调整学习率。- verbose(bool)-
是否打印学习率信息, print(‘Epoch {:5d}: reducing learning rate of group {} to {:.4e}.’.format(epoch, i, new_lr))- threshold_mode(str)- 选择判断指标是否达最优的模式,有两种模式, rel 和 abs。
当 threshold_mode == rel,并且 mode == max 时, dynamic_threshold = best * ( 1 +threshold );
当 threshold_mode == rel,并且 mode == min 时, dynamic_threshold = best * ( 1 -threshold );
当 threshold_mode == abs,并且 mode== max 时, dynamic_threshold = best + threshold ;
当 threshold_mode == rel,并且 mode == max 时, dynamic_threshold = best - threshold;- threshold(float)- 配合 threshold_mode 使用。
cooldown(int)- “冷却时间“,当调整学习率之后,让学习率调整策略冷静一下,让模型再训练一段时间,再重启监测模式。- min_lr(float or list)-
学习率下限,可为 float,或者 list,当有多个参数组时,可用 list 进行设置。- eps(float)-
学习率衰减的最小值,当学习率变化小于 eps 时,则不调整学习率。
optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)scheduler = ReduceLROnPlateau(optimizer, 'max',verbose=1,patience=3)for epoch in range(10): train(...) val_acc = validate(...) # 降低学习率需要在给出 val_acc 之后 scheduler.step(val_acc)
7. 自定义调整学习率 LambdaLR

torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1)
- lr_lambda(function or list)- 一个
计算学习率调整倍数的函数,输入通常为 step,当有多个参数组时,设为 list。
8. 手动设置
def adjust_learning_rate(optimizer, lr): for param_group in optimizer.param_groups: param_group['lr'] = lrfor epoch in range(60): lr = 30e-5 if epoch > 25: lr = 15e-5 if epoch > 30: lr = 7.5e-5 if epoch > 35: lr = 3e-5 if epoch > 40: lr = 1e-5 adjust_learning_rate(optimizer, lr)
【AI】Pytorch_LearningRate的更多相关文章
- 【AI】Exponential Stochastic Cellular Automata for Massively Parallel Inference - 大规模并行推理的指数随机元胞自动机
[论文标题]Exponential Stochastic Cellular Automata for Massively Parallel Inference (19th-ICAIS,PMLR ...
- 【AI】【人工智能】【计算机】人工智能工程技术人员等职业信息公示
人社厅发[2019]48号 各省.自治区.直辖市及新疆生产建设兵团人力资源社会保障厅(局).市场监管局.统计局,国务院各部门.各直属机构.各中央企业.有关社会组织人事劳动保障工作机构,中央军委政治工作 ...
- 【AI】Android Pie中引入的AI功能
前言 “无AI,不未来”,绝对不是一句豪情壮语,AI早已进入到了我们生活当中.去年Google发布的Android Pie系统在AI功能方面就做了重大革新,本文就对Google在新系统中引入的AI功能 ...
- 【AI】Computing Machinery and Intelligence - 计算机器与智能
[论文标题] Computing Machinery and Intelligence (1950) [论文作者] A. M. Turing (Alan Mathison Turing) [论文链接] ...
- 【AI】【计算机】【中国人工智能学会通讯】【学会通讯2019年第01期】中国人工智能学会重磅发布 《2018 人工智能产业创新评估白皮书》
封面: 中国人工智能学会重磅发布 <2018 人工智能产业创新评估白皮书> < 2018 人工智能产业创新评估白皮书>由中国人工智能学会.国家工信安全中心.华夏幸福产业研究院. ...
- 【AI】蒙特卡洛搜索树
http://jeffbradberry.com/posts/2015/09/intro-to-monte-carlo-tree-search/ 蒙特卡洛方法与随机优化: http://iacs-co ...
- 【AI】PaddlePaddle-Docker运行
1.参考官方安装Docker环境,使用一键安装包安装 https://www.jianshu.com/p/b2766173d754 http://www.paddlepaddle.org/docume ...
- 【AI】神经网络基本词汇
neural networks 神经网络activation function 激活函数hyperbolic tangent 双曲正切函数bias units 偏置项activation 激活值for ...
- 【AI】基本概念-准确率、精准率、召回率的理解
样本全集:TP+FP+FN+TN TP:样本为正,预测结果为正 FP:样本为负,预测结果为正 TN:样本为负,预测结果为负 FN:样本为正,预测结果为负 准确率(accuracy):(TP+TN)/ ...
随机推荐
- B站蹦了,关我A站什么事?
昨天的大瓜,B站蹦了,大伙都跳起来分析了一波异常原因,着实给大伙的秋招准备了一波热乎乎的素材!在大家都在关注 B站的时候, 我大A站终于要站起来了!!!经过多方网友的极力引流,我A站也蹦了- 紧急通知 ...
- kong配置service和route实现简单API代理
目录 通过konga连接kong实现API接口代理 1. ADD NEW SERVICE 2. ADD ROUTE 3. 验证API 代理 浏览器验证 请求kong api kong使用Admin A ...
- 雪花算法(SnowFlake)Java实现
分布式id生成算法的有很多种,Twitter的SnowFlake就是其中经典的一种. 算法原理 SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图: 1bit,不用,因为二 ...
- C++ Primer Plus 第四章 复合类型 学习笔记
第四章 复合类型 1. 数组概述 1.1 数组的定义 数组(array)是一种数据格式,能够存储多个同类型的值.每个值都存储在一个独立的数组元素中,计算机在内存中依次存储数组的各个元素. 数组声明的三 ...
- 2019 Mac下安装运行Homestead环境
为了能提高自己的价值,还是要坚持学习新东西才行.这不,从多学会一个PHP开发框架开始.在开始使用Laravel之前,很多"经验"告诉我要先安装Homestead,至于好处,大家可以 ...
- Ubuntu 20.04 安装kodi播放器
打开终端,执行命令在线安装 sudo apt-get install software-properties-common sudo add-apt-repository ppa:team-xbmc/ ...
- Mysql的登录
一.mysql申请连接的四种方式 1 . TCP/IP TCP/IP套接字连接方式是MySQL在任何平台都提供的一种连接方式,也是网络中使用最多的一种方式.这种方式在TCP/IP连接上建立一个基于网络 ...
- Win10强制程序高DPI缩放设置
起因 工作原因,需要在win10上安装数个古老vc版本(vc6,vc2008,vc2010),但是显示器是2K的,DPI缩放有问题 尝试 VC6比较好解决:右键,属性,兼容性,更改高DPI设置,勾选替 ...
- [WinError 10013]以一种访问权限不允许的方式做了一个访问套接字的尝试
Django报错截图如下: 原因分析:出现这种情况在Windows中很常见,就是端口被占用 解决步骤: 1:进入windows中的命令行窗口(win+R之后输入cmd就可以进去) 2:输入 net ...
- python3中文件/IO编程
python3的文件操作可谓是我见过所有语言中最舒服的,那我们来一起看一下py3中的文件操作. 1:文件的打开方式有以下几种: 注:以上图表参考菜鸟教程 2:定位读写文件 f = open(&quo ...