P2491 消防/P1099 树网的核

双倍经验,双倍快乐。

题意

在一个树上选择一段总长度不超过\(s\)的链使所有点到该链距离的最大值最小。

输出这个最小的值。

做法

Define:以下\(s\)指链或链长。

  1. 证明一下\(s\)一定处于直径上。假设它不在直径上,一定存在直径的其中一个端点到\(s\)的距离大于现在所处支链的最大距离。所以\(s\)不在直径上一定不优。
  2. 于是我们找到直径并记录下直径上的所有点。
  3. 然后,我们枚举直径上的每一个长度小于\(s\)的最长区间(最长原因显然,因为长度越短答案肯定不会更优),并计算此时的答案,对于每一个区间的答案取min即可。
  4. 考虑计算每个区间的答案。我们把直径拉出来,用两个指针\(l\)和\(r\)从左向右遍历这个直径,\(s\)即为\(l\)到\(r\)。考虑此时这个区间的答案即为\(l\)到\(r\)中每个点\(i\)的子树中最深的点的距离(我们设为\(h_i\))(注意这里的子树是不包括直径的,即子树中所有的点都属于支链)和\(l\)到直径左端点的距离(设为\(ls\))和\(r\)到直径右端点的距离(设为\(rt\))的最大值。原因显然。
  5. 那么我们可以预处理出\(h_i\),并在遍历直径的时候用单调队列维护\(h\)的最大值,然后用这个值与\(ls\)和\(rt\)的最大值更新答案(取最小值)即可。

一些疑问

  • 当存在多条直径时,区间似乎一定包括重心并尽量使重心居中。然而这并没有什么卵用,并且一样可以用上面的方法做,不会造成影响。

  • \(s\)的左右两端一定在端点上。既是,\(s\)是可以为一个点的。

具体实现和代码

  • 求直径时两次DFS即可。然后发现记录的d数组刚好可以用来当做前缀和(只是使代码略显凌乱罢了)
  • 单调队列似乎要特殊记录一下链首的位置而不能用head代替,否则无法记录区间长(或者只是我没有想到更好的处理方法)
  • 求深度DFS或BFS.
  • 时间复杂度O(n).

(学会了一个新单词diameter,意思是直径,重音在|a|上)

#include<iostream>
#include<cstdio>
#include<cctype>
#include<algorithm>
#include<cstring>
using namespace std;
inline int read(){
int x=0,w=0;char c=getchar();
while(!isdigit(c))w|=c=='-',c=getchar();
while(isdigit(c))x=(x<<3)+(x<<1)+(c^48),c=getchar();
return w?-x:x;
}
namespace star
{
const int maxn=3e5+10;
int n,l;
int ecnt,head[maxn],nxt[maxn<<1],to[maxn<<1],dis[maxn<<1];
inline void addedge(int a,int b,int c){
to[++ecnt]=b,nxt[ecnt]=head[a],head[a]=ecnt;dis[ecnt]=c;
to[++ecnt]=a,nxt[ecnt]=head[b],head[b]=ecnt;dis[ecnt]=c;
}
int d[maxn],mx,fa[maxn],diam[maxn],tot,sum;
void dfs1(int x,int f,int &dia){
fa[x]=f;
if(mx<d[x])
mx=d[x],dia=x;
for(int i=head[x];i;i=nxt[i]){
int u=to[i];
if(u==f)continue;
d[u]=d[x]+dis[i];
dfs1(u,x,dia);
}
}
inline void diameter(){
int dia,dia2;
dfs1(1,0,dia);
mx=0;d[dia]=0;
dfs1(dia,0,dia2);
while(dia2!=dia){
diam[++tot]=dia2;
dia2=fa[dia2];
}
diam[++tot]=dia;
}
int h[maxn],dep[maxn],q[maxn],ans=0x3f3f3f3f;
void dfs2(int x,int f){
for(int i=head[x];i;i=nxt[i]){
int u=to[i];
if(u==f)continue;
dfs2(u,x);
dep[x]=max(dep[x],dep[u]+dis[i]);
}
}
inline void solve(){
for(int i=2;i<tot;i++){
int x=diam[i];
h[i]=0;dep[x]=0;
for(int j=head[x];j;j=nxt[j]){
int u=to[j];
if(u==diam[i-1] or u==diam[i+1])continue;
dfs2(u,x);
h[i]=max(h[i],dep[u]+dis[j]);
}
}
int s=1,t=0,ls=0,rt=mx,from=1;
for(int i=1;i<=tot;i++){
while(s<=t and d[diam[from]]-d[diam[i]]>l)from++,s+=(from>q[s]),ls=(mx-d[diam[from]]);
while(s<=t and h[i]>h[q[t]])t--;
q[++t]=i;rt=d[diam[i]];
ans=min(ans,max(h[q[s]],max(ls,rt)));
}
printf("%d",ans);
}
inline void work(){
n=read(),l=read();
for(int a,b,c,i=1;i<n;i++)a=read(),b=read(),c=read(),addedge(a,b,c);
diameter();
solve();
}
}
signed main(){
star::work();
return 0;
}

P2491 消防/P1099 树网的核的更多相关文章

  1. 洛谷 P1099 树网的核

    P1099 树网的核 题目描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W ...

  2. bzoj1999 / P1099 树网的核

    P1099 树网的核 (bzoj数据加强) 前置知识:树的直径 (并不想贴我的智障写法虽然快1倍但内存占用极大甚至在bzoj上MLE) 正常写法之一:用常规方法找到树的直径,在直径上用尺取法找一遍,再 ...

  3. P1099 树网的核——模拟+树形结构

    P1099 树网的核 无根树,在直径上找到一条长度不超过s的路径,使得最远的点距离这条路径的距离最短: 首先两遍dfs找到直径(第二次找的时候一定要吧father[]清零) 在找到的直径下枚举长度不超 ...

  4. [SDOI2011]消防/[NOIP2007] 树网的核

    消防 题目描述 某个国家有n个城市,这n个城市中任意两个都连通且有唯一一条路径,每条连通两个城市的道路的长度为zi(zi<=1000). 这个国家的人对火焰有超越宇宙的热情,所以这个国家最兴旺的 ...

  5. [NOIP2007] 提高组 洛谷P1099 树网的核

    题目描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并 ...

  6. P1099 树网的核 && P2491 [SDOI2011]消防

    给定一棵树, 你可以在树的直径上确定一条长度不超过 \(S\) 的链, 使得树上离此链最长的点距离最小, 输出这个距离 P2491 数据范围为 P1099 的 \(1000\) 倍 Solution ...

  7. 洛谷 P1099 树网的核+P2491 [SDOI2011]消防

    写在前面:由于是双倍经验就放一块了,虽然数据范围差的有点大. 题目链接 题意:在树的直径上选择一条长度不超过s的路径使这条路径上的点到树上任意点的最大距离最小. 这题数据好像非常水,我写了上界n^2不 ...

  8. #P1099 树网的核 题解

    题目描述 pdf 题解 这一题,刚开始看题目感觉好像很难,题目又长……一看数据范围,呵呵. 已经给出来这是个DAG,所以不用担心连通性的问题.那么怎么做呢? 朴素的做法是把树的直径的两个端点都统计出来 ...

  9. BZOJ2282 SDOI2011消防/NOIP2007树网的核(二分答案+树形dp)

    要求最大值最小容易想到二分答案.首先对每个点求出子树中与其最远的距离是多少,二分答案后就可以标记上一些必须在所选择路径中的点,并且这些点是不应存在祖先关系的.那么如果剩下的点数量>=3,显然该答 ...

随机推荐

  1. 实验4、Flask基于Blueprint & Bootstrap布局的应用服务

    1. 实验内容 模块化工程内容能够更好的与项目组内成员合作,Flask Blueprint提供了重要的模块化功能,使得开发过程更加清晰便利.此外,Flask也支持Bootstrap的使用. 2. 实验 ...

  2. Django(68)drf分页器的使用

    前言 当后台返回的数据过多时,我们就要配置分页器,比如一页最多只能展示10条等等,drf中默认配置了3个分页面 PageNumberPagination:基础分页器,性能略差 LimitOffsetP ...

  3. 【题解】[LuoguP3503]「BZOJ2086」[POI2010] Blocks

    题目描述 给出N个正整数a[1..N],再给出一个正整数k,现在可以进行如下操作:每次选择一个大于k的正整数a[i],将a[i]减去1,选择a[i-1]或a[i+1]中的一个加上1.经过一定次数的操作 ...

  4. 开关电源(1)之BUCK降压变换器工作原理及Multisim实例仿真

    开关电源(Switching  Mode  Power  Supply)即开关稳压电源,是相对于线性稳压电源的一种的新型稳压电源电路,它通过对输出电压实时监测并动态控制开关管导通与断开的时间比值来稳定 ...

  5. Kubernetes ConfigMap详解,多种方式创建、多种方式使用

    我最新最全的文章都在南瓜慢说 www.pkslow.com,欢迎大家来喝茶! 1 简介 配置是程序绕不开的话题,在Kubernetes中使用ConfigMap来配置,它本质其实就是键值对.本文讲解如何 ...

  6. Jmeter将token设置为全局变量并跨线程进行传递参数

    我们在用Jmeter做性能测试时,一般会涉及到多个线程组.而线程之间或接口之间会对上个参数有依赖性,那么我们将接口中的参数提取出来供其他线程组或接口调用呢这就需要使用到__setProperty函数, ...

  7. Spring Boot动态权限变更实现的整体方案

    1.前言 ​ 在Web项目中,权限管理即权限访问控制为网站访问安全提供了保障,并且很多项目使用了Session作为缓存,结合AOP技术进行token认证和权限控制.权限控制流程大致如下图所示: ​ 现 ...

  8. 第三天编程学习Hello,World!

    真正意义上迈入编程的大门--Hello,World! 新建一个文件夹(最好在桌面),方便存放代码 新建一个文件(如:Hello.txt) 改文件后缀名为.java 扩展文件得到Hello.java 编 ...

  9. Go语言中slice作为参数传递时遇到的一些“坑”

    前言 相信看到这个题目,可能大家都觉得是一个老生常谈的月经topic了.一直以来其实把握一个"值传递"基本上就能理解各种情况了,不过最近遇到了更深一点的"小坑" ...

  10. Ubuntu 之 Esc and CapsLK

    Ubuntu 更换 CapsLK 和 ESC 内容如下 // vim .xmodmap !! No Caps Lock clear lock !! Make Caps_lock an escape k ...