noip模拟32 solutions

真是无语子,又没上100,无奈死了

虽然我每次都觉得题很难,但是还是有好多上100的

战神都200多了,好生气啊啊啊

从题开始变难之后,我的时间分配越来越不均匀,导致每次都没有时间做最后一题

今天直接挂掉了30pts,因为最后一题没有注意部分分。。

T1 smooth

这个最简单了,我考场上一秒出80pts做法,直接一波set维护

自带排序和去重,完全不必担心,就是时间复杂度多了个log

80pts.set

#include<bits/stdc++.h>
using namespace std;
#define re register int
#define ll long long
const int N=1e5+5;
const ll maxn=1e18;
int b,k;
ll pt[N],tot;
ll p[25]={0,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71};
set<ll> st;
int sum;
signed main(){
scanf("%d%d",&b,&k);
if(k==1){
printf("1");
return 0;
}
st.insert(1);
while(st.size()){
set<ll>::iterator it=st.begin();
ll tmp=*it;
sum++;//cout<<*it<<endl;
//cout<<sum<<endl;
if(sum==k){
printf("%lld",tmp);
return 0;
}
for(re i=1;i<=b;i++){
if(sum+st.size()-1>=k&&tmp*p[i]>*st.rbegin())break;
if(tmp<=maxn/p[i])
st.insert(tmp*p[i]);
}
st.erase(it);
}
}


所以考完之后,看一眼题解瞬间就明白了,直接用队列维护,不用优先队列,

使用15个优先队列就够了,

因为我们每次都取所有队列头的最小值,保证了每次取出来的都是最小的

那么我们更新后面的答案的时候,只能向队列头最小的那个队列的后面的队列更新值

因为我们要去重,每一个这样更新出来的值,

一定是由一个质数乘上一个队列头最小值出来的,

而这个队列头又是由他的前面的队列头的最小值更新的,

这样每次都是小的乘大的,直接保证了不重不漏。。。

AC_code

#include<bits/stdc++.h>
using namespace std;
#define re register int
#define ll long long
const ll inf=0x3f3f3f3f3f3f3f3f;
ll b,k;
ll p[25]={0,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71};
queue<ll> q[16];
signed main(){
scanf("%lld%lld",&b,&k);
for(re i=1;i<=b;i++)q[i].push(p[i]);
ll mn,who;
if(k==1){
printf("1");
return 0;
}
for(re i=1;i<k;i++){
mn=inf,who;
for(re j=1;j<=b;j++)
if(mn>q[j].front())
mn=q[j].front(),who=j;
q[who].pop();
for(re j=who;j<=b;j++){
q[j].push(mn*p[j]);
}
}
printf("%lld",mn);
}


T2 six

这个题真的是神题,二维状压,真牛逼!!!

我是从这个题才第一次接触到二维状压的

所以其实这个题我是在zxb的指点之下才明白的,原来这个题是这么压的

对于一般的状压来说,我们只需要压这一位是否出现了,

但是这个题他不一样,因为你无法区分2、3和6

当你要加入一个6的时候,你发现当前的序列里已经有了2、3这两个质数

如果就是2、3这两个数,那么6就不能放进去了,但是如果是6的话,那还可以继续放

这是我们最难区分的点,所以我们需要把这两种情况分开,

对于每个可以放到序列里的数来说,最多包含6个质数,所以我们就直接标记他的每一个质数

这时候你肯定会大叫,这什么玩意,举个例子:

B为6,那么2是他的第一个质因子,3是第二个

2:01=1

3:10=2

6:11=3

我们把这些数拆成这样的状态,所以这就是为什么数据范围只有6

我们再对这些拆分进行状压,判断这样的数是否存在,直接用map记忆化搜索就完了

AC_code

#include<bits/stdc++.h>
using namespace std;
#define re register int
#define ll long long
#define pa pair<long long,long long>
#define mpa(x,y) make_pair(x,y)
#define fi first
#define se second
const ll mod=1e9+7;
ll n;
map<pa,ll> mp;
ll sum[1<<6],id[1<<6];
pa ys[10];
int top;
ll dfs(ll s1,ll s2){
map<pa,ll>::iterator it=mp.find(mpa(s1,s2));
if(it!=mp.end())return it->se;
mp.insert(mpa(mpa(s1,s2),1));
it=mp.find(mpa(s1,s2));
for(re i=1;i<(1<<top);i++){
int num=0;
bool flag=0;
for(re j=1;j<(1<<top);j++){
if(!(i&j))continue;
if((s1>>j-1)&1)num++;
if((s2>>j-1)&1)flag=1;
if(flag||num>=2)break;
}
if(flag||num>=2)continue;
if((s1>>i-1)&1)it->se=(it->se+sum[i]*dfs(s1^(1ll<<i-1),s2|(1ll<<i-1))%mod)%mod;
else it->se=(it->se+sum[i]*dfs(s1|(1ll<<i-1),s2)%mod)%mod;
}
return it->se;
}
signed main(){
scanf("%lld",&n);
for(ll i=2;i*i<=n;i++){
if(n%i)continue;
ys[++top].fi=i;
while(n%i==0){
ys[top].se++;
n/=i;
}
}
if(n!=1)ys[++top].fi=n,ys[top].se=1;
for(re i=1;i<=top;i++)id[1<<i-1]=i;
sum[0]=1;for(re i=1;i<(1<<top);i++)
sum[i]=sum[i^(i&(-i))]*ys[id[i&(-i)]].se%mod;
printf("%lld",dfs(0,0)-1);
}


考场上我直接去容斥了,然后发现,这个好像和顺序有关,2、3、6不行,但是2、6、3可以

T3 walker

这个简单哈哈哈,虽然我考场上写都没写

但是我还没见过这么出题的,竟然让我搞随机化,让我枚举50组数据,一定能找到答案

还统计了一下失败的概率,这就靠人品了,rp++

就每次枚举两组数据,直接高斯约旦求解

注意找这个角度的时候,判断是正的还是负的,要不然WA死

AC_code

#include<bits/stdc++.h>
using namespace std;
#define re register int
#define ll long long
#define pa pair<long long,long long>
#define mpa(x,y) make_pair(x,y)
#define fi first
#define se second
const ll mod=1e9+7;
ll n;
map<pa,ll> mp;
ll sum[1<<6],id[1<<6];
pa ys[10];
int top;
ll dfs(ll s1,ll s2){
map<pa,ll>::iterator it=mp.find(mpa(s1,s2));
if(it!=mp.end())return it->se;
mp.insert(mpa(mpa(s1,s2),1));
it=mp.find(mpa(s1,s2));
for(re i=1;i<(1<<top);i++){
int num=0;
bool flag=0;
for(re j=1;j<(1<<top);j++){
if(!(i&j))continue;
if((s1>>j-1)&1)num++;
if((s2>>j-1)&1)flag=1;
if(flag||num>=2)break;
}
if(flag||num>=2)continue;
if((s1>>i-1)&1)it->se=(it->se+sum[i]*dfs(s1^(1ll<<i-1),s2|(1ll<<i-1))%mod)%mod;
else it->se=(it->se+sum[i]*dfs(s1|(1ll<<i-1),s2)%mod)%mod;
}
return it->se;
}
signed main(){
scanf("%lld",&n);
for(ll i=2;i*i<=n;i++){
if(n%i)continue;
ys[++top].fi=i;
while(n%i==0){
ys[top].se++;
n/=i;
}
}
if(n!=1)ys[++top].fi=n,ys[top].se=1;
for(re i=1;i<=top;i++)id[1<<i-1]=i;
sum[0]=1;for(re i=1;i<(1<<top);i++)
sum[i]=sum[i^(i&(-i))]*ys[id[i&(-i)]].se%mod;
printf("%lld",dfs(0,0)-1);
}


noip模拟32[好数学啊]的更多相关文章

  1. Noip模拟32(再度翻车) 2021.8.7

    T1 Smooth 很水的一道题...可是最傻    的是考场上居然没有想到用优先队列优化... 上来开题看到这个,最一开始想,这题能用模拟短除法,再一想太慢了,就想着优化 偏偏想到线性筛然后试别的素 ...

  2. 2021.8.6考试总结[NOIP模拟32]

    T1 smooth 考场上水个了优先队列多带个$log$,前$80$分的点跑的飞快,后面直接萎了. 其实只需开$B$个队列,每次向对应队列中插入新的光滑数,就能保证队列中的数是单调的. 为了保证不重, ...

  3. NOIP模拟:切蛋糕(数学欧拉函数)

    题目描述  BG 有一块细长的蛋糕,长度为 n. 有一些人要来 BG 家里吃蛋糕, BG 把蛋糕切成了若干块(整数长度),然后分给这些人. 为了公平,每个人得到的蛋糕长度和必须相等,且必须是连续的一段 ...

  4. 2018.10.20 NOIP模拟 面包(数学期望)

    传送门 把方差的式子拆开. 方差=平方的期望-期望的平方. 显然只用维护点对的个数和总方案数就行了. 利用分步的思想来统计. 要统计覆盖一个矩形(x1,y1,x2,y2)(x1,y1,x2,y2)(x ...

  5. NOIP模拟 32

    我在31反思中膜拜过了B哥 没想到这次又... 我给老姚家丢脸了...STO 首先T1暴力就写挂了... 贪图从$n^3$*$2^n$优化成$n^2$*$2^n$然后打错了 哗哗的扔分 而且正解都想不 ...

  6. NOIP 模拟 $32\; \rm Walker$

    题解 \(by\;zj\varphi\) 发现当把 \(\rm scale×cos\theta,scale×sin\theta,dx,dy\) 当作变量时只有四个,两个方程就行. 当 \(\rm n\ ...

  7. NOIP 模拟 $32\; \rm Six$

    题解 二维状压. 第一维直接压选不同质因子的方案,第二位压方案. 分两种讨论,显然一种方案最多出现两次,否则就不合法了,所以一种是出现了一次的,另一种是出现了两次的,这样可以减小状态数. 实现可以用 ...

  8. NOIP 模拟 $32\; \rm Smooth$

    题解 \(by\;zj\varphi\) 很简单的贪心题. 开 \(B\) 个队列,每个队列存最后一次乘上的数为当前队列编号的数. 每次去所有队列中队首的最小值,不用开堆,因为开堆用于将所有数排序,但 ...

  9. noip模拟32

    \(\color{white}{\mathbb{山高而青云冷,池深而蛟穴昏,行以慎步,援以轻身,名之以:落石}}\) 开题发现 \(t1\) 80分特别好写,于是先写了 但是这个做法没有任何扩展性,导 ...

随机推荐

  1. mapboxgl绘制3D线

    最近遇到个需求,使用mapboxgl绘制行政区划图层,要求把行政区划拔高做出立体效果,以便突出显示. 拿到这个需求后,感觉很简单呀,只需要用fill-extrusion方式绘制就可以啦,实现出来是这个 ...

  2. k8s 1.12 环境部署及学习笔记

    1.K8S概述 1.Kubernetes是什么 2.Kubernetes特性 3.Kubernetes集群架构与组件 4.Kubernetes核心概念 1.1 Kubernetes是什么 • Kube ...

  3. 『无为则无心』Python序列 — 21、Python字典及其常用操作

    目录 1.字典的应用场景 2.字典的概念 3.创建字典的语法 4.字典常见操作 (1)字典的增加操作 (2)字典的删除操作 (3)字典的修改 (4)字典的查找 (5)copy()复制 1.字典的应用场 ...

  4. 阿里云服务器安装mysql数据库及连接使用

    第一步:安装mysql 我个人是申请的阿里云ecs服务器CentOs操作系统,由于是初装咱们直接进行安装 1.首先从官网下载安装mysql-serve  # wget http://dev.mysql ...

  5. CRM企业管理系统对于企业的价值

    对于企业来说,一个完整的工作流程可以概括为三个阶段:售前.售中.售后.每个阶段都需要不同的管理.此外,客户关系管理客户关系管理系统可以帮助企业在这三个阶段进行业务管理和客户管理,帮助企业更好地运作,增 ...

  6. 可执行jar包在windows server2008下的自启动

    最近要部署项目的服务端在windows server2008下面,所以把项目打包成可执行的jar包,然后希望它能开机自启动,毕竟每次都在cmd下输入java -jar xxx.jar才能启动太繁琐了. ...

  7. MySql数据库缓存

    对MySql查询缓存及SQL Server过程缓存的理解及总结 一.MySql的Query Cache 1.Query Cache   MySQL Query Cache是用来缓存我们所执行的SELE ...

  8. C++ 11 多线程初探-std::memory_order

    std::memory_order(可译为内存序,访存顺序) 动态内存模型可理解为存储一致性模型,主要是从行为(behavioral)方面来看多个线程对同一个对象同时(读写)操作时(concurren ...

  9. Django基础008--model多对多

    1.多对多表结构设计 class Student(models.Model): name = models.CharField(verbose_name='学生名字',max_length=100) ...

  10. python:录屏录音

    import pyaudio import wave from PIL import ImageGrab import cv2 import threading import time from nu ...