RandomForestClassifier参数
【RandomForestClassifier】
参数
n_estimators : 随机森林中树的个数,即学习器的个数。
max_features : 划分叶子节点,选择的最大特征数目
n_features:在寻找最佳分割时要考虑的特征数量
max_depth : 树的最大深度,如果选择default=None,树就一致扩展,直到所有的叶子节点都是同一类样本,或者达到最小样本划分(min_samples_split)的数目。
min_samples_split : 最小样本划分的数目,就是样本的数目少于等于这个值,就不能继续划分当前节点了
min_samples_leaf : 叶子节点最少样本数,如果某叶子节点数目小于这个值,就会和兄弟节点一起被剪枝。
min_weight_fraction_leaf:叶子节点最小的样本权重和
max_leaf_nodes: 最大叶子节点数,默认是”None”,即不限制最大的叶子节点数
min_impurity_split:节点划分的最小不纯度,是结束树增长的一个阈值,如果不纯度超过这个阈值,那么该节点就会继续划分,否则不划分,成为一个叶子节点。
min_impurity_decrease : 最小不纯度减少的阈值,如果对该节点进行划分,使得不纯度的减少大于等于这个值,那么该节点就会划分,否则,不划分。
bootstrap :自助采样,又放回的采样,大量采样的结果就是初始样本的63.2%作为训练集。默认选择自助采样法。
oob_score : bool (default=False)
out-of-bag estimate,包外估计;是否选用包外样本(即bootstrap采样剩下的36.8%的样本)作为验证集,对训练结果进行验证,默认不采用。
n_jobs : 并行使用的进程数,默认1个,如果设置为-1,该值为总的核数。
random_state :随机状态,默认由np.numpy生成
verbose:显示输出的一些参数,默认不输出。
属性(Attribute)
estimators_ :在RandomForestClassifier中,指的是决策树分类器的集合。
classes_:单个类别输出问题或者多类别输出问题中的类别标签数组。
n_classes_:单个类别输出问题或者多类别输出问题中的类别标签的个数。
n_features_ :数据集的特征个数,整型。
n_outputs_ :输出的个数,整型
feature_importances_ :The feature importances (the higher, the more important the feature)特征的权重
oob_score_ :Score of the training dataset obtained using an out-of-bag estimate
oob_decision_function_ :Decision function computed with out-of-bag estimate on the training set.
方法:
apply(X):Apply trees in the forest to X, return leaf indices.将森林中的树应用于X,返回叶索引
desicion_path(X):Return the decision path in the forest
fit(X,Y):在数据集(X,Y)上训练模型。
get_parms():获取模型参数
predict(X):预测数据集X的结果。
predict_log_proba(X):预测数据集X的对数概率。
predict_proba(X):预测数据集X的概率值。
score(X,Y):输出数据集(X,Y)在模型上的准确率。
RandomForestClassifier参数的更多相关文章
- 机器学习——随机森林,RandomForestClassifier参数含义详解
1.随机森林模型 clf = RandomForestClassifier(n_estimators=200, criterion='entropy', max_depth=4) rf_clf = c ...
- 【转】对random_state参数的理解
转自:https://blog.csdn.net/az9996/article/details/86616668 在学习机器学习的过程中,常常遇到random_state这个参数,下面来简单叙述一下它 ...
- sklearn参数优化方法
学习器模型中一般有两个参数:一类参数可以从数据中学习估计得到,还有一类参数无法从数据中估计,只能靠人的经验进行指定,后一类参数就叫超参数 比如,支持向量机里的C,Kernel,gama,朴素贝叶斯里的 ...
- 《转》sklearn参数优化方法
sklearn参数优化方法 http://www.cnblogs.com/nolonely/p/7007961.html 学习器模型中一般有两个参数:一类参数可以从数据中学习估计得到,还有一类参 ...
- sklearn中的超参数调节
进行参数的选择是一个重要的步骤.在机器学习当中需要我们手动输入的参数叫做超参数,其余的参数需要依靠数据来进行训练,不需要我们手动设定.进行超参数选择的过程叫做调参. 进行调参应该有一下准备条件: 一个 ...
- 关于RandomizedSearchCV 和GridSearchCV(区别:参数个数的选择方式)
# -*- coding: utf-8 -*- """ Created on Tue Aug 09 22:38:37 2016 @author: Administrato ...
- #调整随机森林的参数(调整n_estimators随机森林中树的数量默认10个树,精度递增显著,但并不是越多越好),加上verbose=True,显示进程使用信息
#调整随机森林的参数(调整n_estimators随机森林中树的数量默认10个树,精度递增显著) from sklearn import datasets X, y = datasets.make_c ...
- #调整随机森林的参数(调整max_features,结果未见明显差异)
#调整随机森林的参数(调整max_features,结果未见明显差异) from sklearn import datasets X, y = datasets.make_classification ...
- sklearn的常用函数以及参数
sklearn可实现的函数或者功能可分为如下几个方面 1.分类算法2.回归算法3.聚类算法4.降维算法5.模型优化6.文本预处理 其中分类算法和回归算法又叫监督学习,聚类算法和降维算法又叫非监督学习 ...
随机推荐
- mysql索引设计的注意事项(大量示例,收藏再看)
mysql索引设计的注意事项(大量示例,收藏再看) 目录 一.索引的重要性 二.执行计划上的重要关注点 (1).全表扫描,检索行数 (2).key,using index(覆盖索引) (3).通过ke ...
- PAT-1146(Topological Order)拓扑排序+判断一个序列是否满足拓扑序列
Topological Order PAT-1146 #include<iostream> #include<cstring> #include<string> # ...
- Hi3559AV100外接UVC/MJPEG相机实时采图设计(四):VDEC_Send_Stream线程分析
下面随笔将对Hi3559AV100外接UVC/MJPEG相机实现实时采图设计的关键点-VDEC_Send_Stream线程进行分析,一两个星期前我写了有三篇系列随笔,已经实现了项目功能,大家可以参考下 ...
- C# 应用 - 封装类访问 Oracle 数据库
1. 引入库类 Oracle.ManagedDataAccess.dll using Oracle.ManagedDataAccess.Client; 2. 粗暴封装 namespace xx { p ...
- C# 基础 - string 和 Datetime
1. string 1. 格式化填充 string str = "this {0} a {1}"; Console.WriteLine(string.Format(str, &qu ...
- Java8 BiFunction 简单用用
最近来了新公司,主要用到了ElasitcSearch,大家都知道在底层查询代码中往往需要判断传入某个参数是否为空来判断设置查询,例如下方代码: BoolQueryBuilder query = Que ...
- centos /bin /sbin /usr/bin /usr/sbin 目录的说明
在linux下我们经常用到的四个应用程序的目录是/bin./sbin./usr/bin./usr/sbin .而四者存放的文件一般如下: bin目录: bin为binary的简写主要放置一些系 ...
- 【odoo14】第五章、服务器侧开发-基础
本章包含如下内容: 定义模型方法和使用api装饰器 向用户反馈错误信息 针对不同的对象获取空数据集 创建新纪录 更新数据集数据 搜索数据 组合数据集 过滤数据集 遍历记录集 排序数据集 重写已有业务逻 ...
- AmazonS3 使用AWS SDK for Java实现跨源资源共享 (CORS)
CORS 配置 创建 CORS 配置并对存储桶设置该配置 通过添加规则来检索并修改配置 向存储桶添加修改过的配置 删除配置 import com.amazonaws.AmazonServiceExce ...
- 递归实现1-n的全排列(JAVA语言)
思路: For example: 123的全排列= 1在最前面 23的全排列 + 2在最前面 13的全排列 + 3最前面 12的全排列 所以只需交换和最前面元素的位置,生成剩余元素的全排列即可. im ...