七、Numpy高效数据处理
Numpy的主要作用是进行矩阵运算
在使用时首先要导入包
import numpy as np
np.version.version 用来查看版本信息
# 构建一维数组
n1=np.array([1,2,3]) 注意外面是小括号
n1.shape 输出维度数 # 构建二维数组
n2= np.array([[1,2,3],[4,5,6]]) 一个大方括号,里面是两个小方括号
n2.shape
(2, 3)
下面这几个比较绕人,多看多记
# 快速构建 ndarray
# 序列创建:
np.arange(15)#类似于 python 中的 range,创建一个第一个维度为 15 的 ndarray 对象。
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
np.arange(2,3,0.1) #起点,终点,步长值。含起点值,不含终点值。
array([ 2. , 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9])
np.linspace(1,10,10) #起点,终点,区间内点数。起点终点均包括在内。
array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
np.arange(0,1,0.1) #0 到 1 之间步长为 0.1 的数组, 数组中不包含 1
array([ 0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
np.linspace(0, 1, 5) # 开始:0, 结束 1, 元素数 5。
array([ 0. , 0.25, 0.5 , 0.75, 1. ])
np.eye(3)# 对角线矩阵 (三行三列) array([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.]])
np.random.rand(3,2) #随机数矩阵: 三行两列
注意点:
a[:,:] # 第一个冒号代表切出所有的行,第二个冒号代表切出所有的列。
c1=np.arange(50).reshape(2,5,5)
np.save('d:/c1',c1)
# 保存好的数组,默认后缀为 npy
# 多个数组保存使用 savez 方法。 # 在根路径的情况下如上就直接写 # 但在其他的路径时,np.save('C:\\Users\\asus\\Desktop\\python课程\\a1',a1) a1=np.arange(50).reshape(2,5,5) # ????
np.save('C:\\Users\\asus\\Desktop\\python课程\\a1',a1)
np.load('C:\\Users\\asus\\Desktop\\python课程\\a1.npy')
# 读取 # load 方法载入 numpy 格式的数据
# savetxt,loadtxt 方法载入文本格式的数据同理
numpy y 函数 参考
生成函数 作用
np.array( x)将输入数据转化为一个 ndarray
np.array( x, dtype)将输入数据转化为一个类型为 type 的 ndarray
np.asarray( array ) 将输入数据转化为一个新的(copy)ndarray
np.ones( N )生成一个 N长度的一维全一 ndarray
np.ones( N , dtype)生成一个 N长度类型是 dtype 的一维全一 ndarray
np.ones_like( ndarray )生成一个形状与参数相同的全一 ndarray
np.zeros( N )生成一个 N长度的一维全零 ndarray
np.zeros( N , dtype)生成一个 N长度类型位 dtype 的一维全零 ndarray
np.zeros_like(ndarray)类似 np.ones_like( ndarray )
np.em pty( N )生成一个 N长度的未初始化一维 ndarray
np.em pty( N , dtype)q生成一个 N长度类型是 dtype 的未初始化一维 ndarray
np.em pty(ndarray)类似 np.ones_like( ndarray )
np.eye( N )创建一个 N * N的单位矩阵(对角线为 1,其余为 0)
np.identity( N )
np.arange( num ) 生成一个从 0 到 num-1 步数为 1 的一维 ndarray
。。。。。。 诸如此类不再附上
七、Numpy高效数据处理的更多相关文章
- 七个高效的文本编辑习惯(以Vim为例)
七个高效的文本编辑习惯 如果你花很多时间输入纯文本.写程序或HTML,那么通过高效地使用一个好的编辑器,你可以节省大部分时间.本文将提供指导和提示,让你更迅速地做这些工作,并且少犯错误. 本文用开源文 ...
- 3.7Python数据处理篇之Numpy系列(七)---Numpy的统计函数
目录 目录 前言 (一)函数一览表 (二)统计函数1 (三)统计函数2 目录 前言 具体我们来学Numpy的统计函数 (一)函数一览表 调用方式:np.* .sum(a) 对数组a求和 .mean(a ...
- numpy数学数据处理
数学和统计方法 sum 对数组中全部或某轴向的元素求和.零长度的数组的sum为0. mean 算术平均数.零长度的数组的mean为NaN. import numpy as np import nump ...
- python numpy高效体现
import numpy as np import time def python_sum(n): a=[i**2 for i in range(n)] b=[i**3 for i in range( ...
- reshape2包--R高效数据处理包
介绍如何使用reshape2包将宽型数据转换成长型数据,将长型数据转换成宽型数据.Reshape2是Hadley Wickham开发和维护的. 1.长数据VS宽数据 宽型数据:每列代表一个不同的变量. ...
- 《利用Python进行数据分析·第2版》第四章 Numpy基础:数组和矢量计算
<利用Python进行数据分析·第2版>第四章 Numpy基础:数组和矢量计算 numpy高效处理大数组的数据原因: numpy是在一个连续的内存块中存储数据,独立于其他python内置对 ...
- 机器学习- Numpy基础 吐血整理
Numpy是专门为数据科学或者数据处理相关的需求设计的一个高效的组件.听起来是不是挺绕口的,其实简单来说就2个方面,一是Numpy是专门处理数据的,二是Numpy在处理数据方面很牛逼(肯定比Pytho ...
- 七牛云存储Python SDK使用教程 - 上传策略详解
文 七牛云存储Python SDK使用教程 - 上传策略详解 七牛云存储 python-sdk 七牛云存储教程 jemygraw 2015年01月04日发布 推荐 1 推荐 收藏 2 收藏,2.7k ...
- R︱高效数据操作——data.table包(实战心得、dplyr对比、key灵活用法、数据合并)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 由于业务中接触的数据量很大,于是不得不转战开始 ...
随机推荐
- 脱壳——UPX脱壳原理(脱壳helloworld)
脱壳--UPX脱壳原理 脱壳步骤 1 找到OEP 2 dump(导出)内存文件 3 修复 1 找到OEP 1 程序运行先从壳代码运行,壳代码执行完之后会跳转到真正的OEP,也就是是说第一步,首先要找到 ...
- 10- JMeter5.1.1 工具快速入门
什么是JMeter JMeter是Apache组织开发的开源软件,由Java语言实现. 主要用于软件系统性能测试,他最初被设计用于web测试,后来被扩展到其他领域. Jmeter特点 http://w ...
- 哈希爆破神器Hashcat的用法
目录 HashCat HshCat的使用 使用Hashcat生成字典 使用Hashcat破解NTLMv2 HashCat HashCat系列软件在硬件上支持使用CPU.NVIDIA GPU.ATI G ...
- Caddy-基于go的微型serve用来做反向代理和Gateway
1.简单配置 2.go实现,直接一个二进制包,没依赖. 3.默认全站https 常用 反向代理,封装多端口gateway 使用:启动直接执行二进制文件 caddy 就行 根据输出信息 直接https: ...
- Python技术栈性能测试工具Locust入门
Locust是一款Python技术栈的开源的性能测试工具.Locust直译为蝗虫,寓意着它能产生蝗虫般成千上万的并发用户: Locust并不小众,从它Github的Star数量就可见一斑: 截止文章写 ...
- Cannot read property 'style' of null
代码 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8& ...
- Compare the contents of two arrays
✍️Define a methed to compare the contents of two arrays and return the result . 定义一个方法,用于比较两个数组的内容是否 ...
- @JsonFormat 格式化时间 时出现时间不准确问题
今天突然报个问题,简单来说说就是数据库某一字段的记录时间为 14点,然而展示到前台却是 6点 我腚眼一看,postman测试的数据也是6点 然而idea查出来的并不是6点 再仔细一瞅idea实体类的时 ...
- X264码率控制总结1——ABR,CQP,CRF
1. X264显式支持的一趟码率控制方法有:ABR, CQP, CRF. 缺省方法是CRF.这三种方式的优先级是ABR > CQP > CRF. if ( bitrate ) rc_me ...
- BUAA-OO-第四单元总结——终章
面向对象第四单元博客总结--终章 第四单元作业设计 第13次作业设计 类和对应方法属性设计 类设计如下图所示 本次作业主要涉及六个类,其中包括主类 Main ,通用Map类 UmlElementIdM ...