MindSpore图像分类模型支持(Lite

图像分类介绍

图像分类模型可以预测图片中出现哪些物体,识别出图片中出现物体列表及其概率。 比如下图经过模型推理的分类结果为下表:

类别

概率

plant

0.9359

flower

0.8641

tree

0.8584

houseplant

0.7867

使用MindSpore Lite实现图像分类的示例代码

https://gitee.com/mindspore/mindspore/tree/r1.1/model_zoo/official/lite/image_classification

图像分类模型列表

下表是使用MindSpore Lite推理的部分图像分类模型的数据。

下表的性能是在mate30手机上测试的。

MindSpore图像分类模型支持(Lite)的更多相关文章

  1. 【转】[caffe]深度学习之图像分类模型AlexNet解读

    [caffe]深度学习之图像分类模型AlexNet解读 原文地址:http://blog.csdn.net/sunbaigui/article/details/39938097   本文章已收录于: ...

  2. [caffe]深度学习之图像分类模型VGG解读

    一.简单介绍 vgg和googlenet是2014年imagenet竞赛的双雄,这两类模型结构有一个共同特点是go deeper.跟googlenet不同的是.vgg继承了lenet以及alexnet ...

  3. MindSpore静态图语法支持

    MindSpore静态图语法支持 概述 在Graph模式下,Python代码并不是由Python解释器去执行,而是将代码编译成静态计算图,然后执行静态计算图. 关于Graph模式和计算图,可参考文档: ...

  4. 我的Keras使用总结(2)——构建图像分类模型(针对小数据集)

    Keras基本的使用都已经清楚了,那么这篇主要学习如何使用Keras进行训练模型,训练训练,主要就是“练”,所以多做几个案例就知道怎么做了. 在本文中,我们将提供一些面向小数据集(几百张到几千张图片) ...

  5. ML.NET 示例:图像分类模型训练-首选API(基于原生TensorFlow迁移学习)

    ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 Microsoft.ML 1.5.0 动态API 最新 控制台应用程序和Web应用程序 图片文件 图像分类 基 ...

  6. [caffe]深度学习之图像分类模型AlexNet解读

    在imagenet上的图像分类challenge上Alex提出的alexnet网络结构模型赢得了2012届的冠军.要研究CNN类型DL网络模型在图像分类上的应用,就逃不开研究alexnet.这是CNN ...

  7. 面向小数据集构建图像分类模型Keras

    文章信息 本文地址:http://blog.keras.io/building-powerful-image-classification-models-using-very-little-data. ...

  8. 使用PyTorch建立图像分类模型

    概述 在PyTorch中构建自己的卷积神经网络(CNN)的实践教程 我们将研究一个图像分类问题--CNN的一个经典和广泛使用的应用 我们将以实用的格式介绍深度学习概念 介绍 我被神经网络的力量和能力所 ...

  9. MindSpore自定义模型损失函数

    技术背景 损失函数是机器学习中直接决定训练结果好坏的一个模块,该函数用于定义计算出来的结果或者是神经网络给出的推测结论与正确结果的偏差程度,偏差的越多,就表明对应的参数越差.而损失函数的另一个重要性在 ...

随机推荐

  1. POJ 2752 同一个串的前后串

    题解东北赛回来再补 #include<stdio.h> #include<string.h> int next[500000]; int ans[500000]; char s ...

  2. Linux中的网络配置

    目录 网卡的配置 NetworkManager的使用 Team网卡绑定 Centos6.5.Redhat7.Kali网卡配置的不同 Kali桥接模式配置静态ip 网卡的配置 网卡命名的不同: Rhel ...

  3. Python中的optparse模块的使用

    optparse模块主要用来为脚本传递命令参数,采用预先定义好的选项来解析命令行参数. 实例化一个 OptionParser 对象(可以带参,也可以不带参数),带参的话会把参数变量的内容作为帮助信息输 ...

  4. android安全学习、工具库、框架

    在介绍android工具之前,先理清android中出现的文件格式: java:android源码 class:java编译后生成: dex: 由dx工具编译class而成,由dalvik执行: sm ...

  5. node-util

    Node.js 常用工具 util 是一个Node.js 核心模块,提供常用函数的集合,用于弥补核心JavaScript 的功能 过于精简的不足. util.inherits util.inherit ...

  6. 机器视觉-EasyDL商品检测-标准版-Demo

    机器视觉-EasyDL商品检测-标准版 功能: EasyDL是百度大脑中的一个定制化训练和服务平台,EasyDL零售版是EasyDL针对零售场景推出的行业版,定制商品检测服务是EasyDL零售版的一项 ...

  7. NumPy中文文档搬砖(划掉)学习笔记(1)

    原文地址 前言 况下加速Python中的操作运行时.适用于快速数值运算的一个选项是NumPy,它当之无愧地将自己称为使用Python进行科学计算的基本软件包. 当然,很少有人将50微秒(百万分之五十秒 ...

  8. @RequestParam、@PathVariable、 @RequestBody用法

    Get和Post请求 get方式的请求是没有请求体的.但是get有query string parameter .比如url?name=zhangsan post请求发现了两种请求体.一种是FromD ...

  9. 使用TK框架中updateByPrimaryKey与updateByPrimaryKeySelective区别

    int updateByPrimaryKey(T var1); int updateByPrimaryKeySelective(T var1); updateByPrimaryKeySelective ...

  10. 【Web前端HTML5&CSS3】03-字符实体与语义标签

    笔记来源:尚硅谷Web前端HTML5&CSS3初学者零基础入门全套完整版 目录 字符实体与语义标签 1. 字符实体 2. meta标签 3. 语义标签 4. 块元素与行内元素 块元素(bloc ...