通过打表后可以发现,当初始石头数 \(|X - Y| \le 1\) 时先手必败否则先手必胜。

我们考虑使用归纳证明这个结论,显然 \((1, 0), (1, 1)\) 时是成立的。

基于观察,我们可以发现:

  • 对于 \(|X - Y| > 1\) 的情况,先手总存在一种策略使得让后手取得 \(|X' - Y'| \le 1\) 的情况。

  • 对于 \(|X - Y| \le 1\) 的情况,无论先手如何操作后手都必然能取得 \(|X' - Y'| > 1\) 的情况。

对于前者,不妨设 \(X < Y, Y = X + k\),则先手只需从 \(Y\) 中拿出 \(\lceil \frac{k}{4} \rceil \times 2\) 即可。

对于后者,当 \(X = Y\) 时结论显然成立;当 \(Y = X + 1\) 时,两者的差值随 \(Y\) 中取棋数量单调递增,当取最小 \(2\) 个时差值也会超过 \(1\) 因此后者成立。

通过归纳可知判定结论的正确性。

#include <bits/stdc++.h>
using namespace std;
#define int long long
int n, m;
signed main() {
cin >> n >> m;
printf(abs(n - m) <= 1ll ? "Brown" : "Alice");
return 0;
}

基于观察如果发现博弈论的一个状态必然到达其补集,其补集总是存在一种方案到达该状态时,这个状态往往是必败态,通过类似上面的归纳即可证明。

我称这个为博弈论互补状态可转化的必败性。

AT2400 [ARC072B] Alice&Brown的更多相关文章

  1. ARC072 D Alice&Brown 博弈论

    ---题面--- 题解: 题目大意:有2堆石子数分别为x, y的石子,你每次可以从中间的某一堆中取出2i个石子,扔掉i个,并把剩下的i个放到另一堆,无法操作的人就输了. 现在给定x,y,判断先手必赢还 ...

  2. 【AtCoder】ARC072

    ARC072 C - Sequence 直接认为一个数是正的,或者第一个数是负的,每次将不合法的负数前缀和改成+1正数前缀和改成-1 #include <bits/stdc++.h> #d ...

  3. ARC072/ABC059

    AtCoder Regular Contest 072 / Beginner Contest 059 Announcement <br > 猛然发现今天有一场AC.....然后..显示手残 ...

  4. AtCoder刷题记录

    构造题都是神仙题 /kk ARC066C Addition and Subtraction Hard 首先要发现两个性质: 加号右边不会有括号:显然,有括号也可以被删去,答案不变. \(op_i\)和 ...

  5. (HDU 5558) 2015ACM/ICPC亚洲区合肥站---Alice's Classified Message(后缀数组)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=5558 Problem Description Alice wants to send a classi ...

  6. 2016中国大学生程序设计竞赛 - 网络选拔赛 J. Alice and Bob

    Alice and Bob Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) ...

  7. bzoj4730: Alice和Bob又在玩游戏

    Description Alice和Bob在玩游戏.有n个节点,m条边(0<=m<=n-1),构成若干棵有根树,每棵树的根节点是该连通块内编号最 小的点.Alice和Bob轮流操作,每回合 ...

  8. Alice and Bob(2013年山东省第四届ACM大学生程序设计竞赛)

    Alice and Bob Time Limit: 1000ms   Memory limit: 65536K 题目描述 Alice and Bob like playing games very m ...

  9. 阿里前端框架Alice是个不错的选择

    BootStrap虽然用户群体广大,其整体风格尽管有不少skin可选,但以国情来看还是不好看. 阿里开源的前端框架,个人觉得还是很不错,Alice处处透着支付宝中界面风格的气息,电商感挺强. 以下内容 ...

随机推荐

  1. Chapter 3 Observational Studies

    目录 概 3.1 3.2 Exchangeability 3.3 Positivity 3.4 Consistency First Second Fine Point 3.1 Identifiabil ...

  2. Python Revisited Day 09 (调试、测试与Profiling)

    目录 9.1 调试 9.1.1 处理语法错误 9.1.2 处理运行时错误 9.1.3 科学的调试 9.2 单元测试 9.3 Profiling 9.1 调试 定期地进行备份是程序设计中地一个关键环节- ...

  3. 本地修改配置hosts文件解决Github加载慢问题

    本地修改配置hosts文件解决Github加载慢问题 手动方式 hosts 文件在每个系统的位置不一,详情如下: Windows 系统:C:\Windows\System32\drivers\etc\ ...

  4. <数据结构>KMP算法

    next数组 定义 严格定义:next[i]表示使子串s[0...k] == s[i-k...i]的最大的k(前后缀可以重叠,但不能是s[0..i]本身) 含义:最长相等前后缀的下标,没有则赋-1 图 ...

  5. 使用PyTorch构建神经网络模型进行手写识别

    使用PyTorch构建神经网络模型进行手写识别 PyTorch是一种基于Torch库的开源机器学习库,应用于计算机视觉和自然语言处理等应用,本章内容将从安装以及通过Torch构建基础的神经网络,计算梯 ...

  6. c++—通讯录管理系统

    一.运用所学的结构体.地址指针等基础知识,完成通讯录管理系统 二.系统主要有以下6个功能: 1.添加联系人2.显示联系人 3.删除联系人 4.查找联系人5.修改联系人 6.清空联系人 1 #inclu ...

  7. 过年有燃放烟花爆竹禁令那我们用css写一个仙女棒烟花看看吧

    先是去找了一张简易画的烟花照片,可以看出主要结构为歪曲的线条结构. 方案一: 弯曲的线条第一反应到的就是"圆角边框": width: 200px; height: 200px; b ...

  8. 初识python: 反射

    反射:通过字符串映射或修改程序运行时的状态.属性.方法 反射有以下三个方法: hasattr(object, name)           判断一个对象(object)里是否有对应的字符串(name ...

  9. Python_类型转换

    列表与字符串互相转换 join方法将list转换为string _list = ["a", "b", "c"] # 以".&quo ...

  10. JMeter_使用正则和JSON提取器参数化(常用于提取token)

    一.使用正则表达式提取器提取token 查看登录响应参数找出token.图中token为 "ticketString": "ccf26b17-a96f-4913-8925 ...