\(\mathcal{Description}\)

  link.

  给定一个 \(n\) 个结点 \(m\) 条边的无向图,\(q\) 次操作每次随机选出一条边。问 \(q\) 条边去重后构成生成树的方案总数,对 \(p\) 取模。

\(\mathcal{Solution}\)

  首先求出 \(n-1\) 条边构成生成树的方案数,显然矩阵树定理。

  接着,令 \(f(i,j)\) 表示操作 \(i\) 次,去重后有 \(j\) 条边的方案数。那么有:

\[f(i,j)=jf(i-1,j)+(m-j+1)f(i-1,j-1)
\]

  这个式子可以矩阵快速幂优化,最后把上面两个东西乘起来就是总方案啦。复杂度 \(\operatorname{O}(n^3\log q)\)。

\(\mathcal{Code}\)

  这个 HDU 它一直 SF 呢 qwq。理论 AC 代码如下 w。

#include <cstdio>
#include <cstring>
#include <assert.h>
#include <iostream> const int MAXN = 100;
int n, m, p, q, K[MAXN + 5][MAXN + 5]; inline void add ( const int u, const int v ) {
++ K[u][u], ++ K[v][v], -- K[u][v], -- K[v][u];
if ( K[u][v] < 0 ) K[u][v] += p;
if ( K[v][u] < 0 ) K[v][u] += p;
} inline int det ( const int n ) {
int ret = 1, swp = 1;
for ( int i = 1; i < n; ++ i ) {
for ( int j = i + 1; j < n; ++ j ) {
for ( ; K[j][i]; std::swap ( K[i], K[j] ), swp *= -1 ) {
int d = K[i][i] / K[j][i];
for ( int k = i; k < n; ++ k ) K[i][k] = ( K[i][k] - 1ll * d * K[j][k] % p + p ) % p;
}
}
if ( ! ( ret = 1ll * ret * K[i][i] % p ) ) return 0;
}
return ( ret * swp + p ) % p;
} struct Matrix {
int n, m, mat[MAXN + 5][MAXN + 5];
Matrix () {} Matrix ( const int tn, const int tm ): n ( tn ), m ( tm ), mat {} {}
inline int* operator [] ( const int key ) { return mat[key]; }
inline Matrix operator * ( Matrix t ) {
assert ( m == t.n );
Matrix ret ( n, t.m );
for ( int i = 0; i <= n; ++ i ) {
for ( int k = 0; k <= m; ++ k ) {
for ( int j = 0; j <= t.m; ++ j ) {
ret[i][j] = ( ret[i][j] + 1ll * mat[i][k] * t[k][j] ) % p;
}
}
}
return ret;
}
}; inline Matrix qkpow ( Matrix A, int b ) {
Matrix ret ( A.n, A.m );
for ( int i = 0; i <= A.n; ++ i ) ret[i][i] = 1;
for ( ; b; A = A * A, b >>= 1 ) if ( b & 1 ) ret = ret * A;
return ret;
} int main () {
int T;
for ( scanf ( "%d", &T ); T --; memset ( K, 0, sizeof K ) ) {
scanf ( "%d %d %d %d", &n, &m, &p, &q );
for ( int i = 1, u, v; i <= m; ++ i ) scanf ( "%d %d", &u, &v ), add ( u, v );
int tree = det ( n );
if ( ! tree || q < n - 1 ) { puts ( "0" ); continue; }
Matrix F ( 0, n - 1 ), T ( n - 1, n - 1 );
F[0][0] = 1;
for ( int i = 0; i < n; ++ i ) {
T[i][i] = i;
if ( i ) T[i - 1][i] = n - i;
}
F = F * qkpow ( T, q );
printf ( "%d\n", int ( 1ll * tree * F[0][n - 1] % p ) );
}
return 0;
}

Solution -「HDU 5498」Tree的更多相关文章

  1. Solution -「HDU 6875」Yajilin

    \(\mathcal{Description}\)   Link.(HDU 裂开了先放个私链 awa.)   在一个 \(n\times n\) 的方格图中,格子 \((i,j)\) 有权值 \(w_ ...

  2. Solution -「HDU 6643」Ridiculous Netizens

    \(\mathcal{Description}\)   Link.   给定一棵含有 \(n\) 个结点的树,点 \(u\) 有点权 \(w_u\),求树上非空连通块的数量,使得连通块内点权积 \(\ ...

  3. Solution -「ARC 125F」Tree Degree Subset Sum

    \(\mathcal{Description}\)   Link.   给定含有 \(n\) 个结点的树,求非负整数对 \((x,y)\) 的数量,满足存在 \(\exist S\subseteq V ...

  4. Solution -「Gym 102798K」Tree Tweaking

    \(\mathcal{Description}\)   Link.   给定排列 \(\{p_n\}\),求任意重排 \(p_{l..r}\) 的元素后,将 \(\{p_n\}\) 依次插入二叉搜索树 ...

  5. Solution -「HDU 1788」CRT again

    \(\mathcal{Description}\)   Link.   解同余方程组: \[x\equiv m_i-a\pmod{m_i} \]   其中 \(i=1,2,\dots,n\).   \ ...

  6. Solution -「HDU #6566」The Hanged Man

    \(\mathcal{Description}\)   Link.   给定一棵含 \(n\) 个点的树,每个结点有两个权值 \(a\) 和 \(b\).对于 \(k\in[1,m]\),分别求 \[ ...

  7. Solution -「CF 1375G」Tree Modification

    \(\mathcal{Description}\)   Link.   给定一棵 \(n\) 个结点的树,每次操作选择三个结点 \(a,b,c\),满足 \((a,b),(b,c)\in E\),并令 ...

  8. Solution -「ARC 104E」Random LIS

    \(\mathcal{Description}\)   Link.   给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...

  9. Solution -「Gym 102759I」Query On A Tree 17

    \(\mathcal{Description}\)   Link.   给定一棵含 \(n\) 个结点的树,结点 \(1\) 为根,点 \(u\) 初始有点权 \(a_u=0\),维护 \(q\) 次 ...

随机推荐

  1. nuxt2.0项目创建(最新)

     使用import需要babel编译写法如下 //修改1打开package.json文件 "dev": "cross-env NODE_ENV=development n ...

  2. react中自定义antd主题与支持less(第二部)

    自定义主题 首先自定义主题需要修改antd,antd本身也是less写的之后编译成css的,所以当我们需要使用less. 1.yarn add react-app-rewire-less --dev ...

  3. vue3.0+ts+setup语法糖props写法

    写法一 import defaultImg from '@/assets/images/defaultImg.png' const props = defineProps({ src: { type: ...

  4. nginx+php环境搭建详解(Linux)

    今天在内网环境下,给linux主机安装nginx+php环境,由于是内网环境,只能手动解压缩包进行安装,在这过程中我也着实遇到了一些问题(困扰了我许久),还好最后搭建环境成功了,所以写篇博客记录一下, ...

  5. VirtualBox 安装 Ubuntu 20.04 全流程

    VirtualBox 安装 Ubuntu 20.04 全流程 内容概要 这个作业属于哪个课程 2022面向对象程序设计 这个作业要求在哪里 2022面向对象程序设计寒假作业1 这个作业的目标 在虚拟机 ...

  6. 《剑指offer》面试题45. 把数组排成最小的数

    问题描述 输入一个正整数数组,把数组里所有数字拼接起来排成一个数,打印能拼接出的所有数字中最小的一个.   示例 1: 输入: [10,2] 输出: "102" 示例 2: 输入: ...

  7. 【reverse】逆向6 JCC

    [reverse]逆向6 JCC 前言 我们之前学习的时候讲了,eip寄存器存储的是当前(即将执行的语句的) 指向地址 而我们之前提到的下断点(F2),就和我们编程中的下断点一样,执行到某句汇编指令然 ...

  8. 【解决了一个小问题】如何展示VictoriaMetrics组件上报的bucket数据

    VM体系还真的是不一(he)样(qun), 它上报的监控数据长这样: vmagent_remotewrite_block_size_rows_bucket{vmrange="2.448e+0 ...

  9. 华为matebook x pro蓝屏和拆机更换固态硬盘

    华为老版本的笔记本电脑现在总是蓝屏. 情况 原因 我个人认为是建兴的固态硬盘的缘故. 我的笔记本几乎没用过,因为考研.如果玩游戏使用的老ThinkPad S5.matebook我这个丐版因为没有独立显 ...

  10. Windows 下如何查看文件夹被哪个进程所占用