Solution -「HDU 5498」Tree
\(\mathcal{Description}\)
link.
给定一个 \(n\) 个结点 \(m\) 条边的无向图,\(q\) 次操作每次随机选出一条边。问 \(q\) 条边去重后构成生成树的方案总数,对 \(p\) 取模。
\(\mathcal{Solution}\)
首先求出 \(n-1\) 条边构成生成树的方案数,显然矩阵树定理。
接着,令 \(f(i,j)\) 表示操作 \(i\) 次,去重后有 \(j\) 条边的方案数。那么有:
\]
这个式子可以矩阵快速幂优化,最后把上面两个东西乘起来就是总方案啦。复杂度 \(\operatorname{O}(n^3\log q)\)。
\(\mathcal{Code}\)
这个 HDU 它一直 SF 呢 qwq。理论 AC 代码如下 w。
#include <cstdio>
#include <cstring>
#include <assert.h>
#include <iostream>
const int MAXN = 100;
int n, m, p, q, K[MAXN + 5][MAXN + 5];
inline void add ( const int u, const int v ) {
++ K[u][u], ++ K[v][v], -- K[u][v], -- K[v][u];
if ( K[u][v] < 0 ) K[u][v] += p;
if ( K[v][u] < 0 ) K[v][u] += p;
}
inline int det ( const int n ) {
int ret = 1, swp = 1;
for ( int i = 1; i < n; ++ i ) {
for ( int j = i + 1; j < n; ++ j ) {
for ( ; K[j][i]; std::swap ( K[i], K[j] ), swp *= -1 ) {
int d = K[i][i] / K[j][i];
for ( int k = i; k < n; ++ k ) K[i][k] = ( K[i][k] - 1ll * d * K[j][k] % p + p ) % p;
}
}
if ( ! ( ret = 1ll * ret * K[i][i] % p ) ) return 0;
}
return ( ret * swp + p ) % p;
}
struct Matrix {
int n, m, mat[MAXN + 5][MAXN + 5];
Matrix () {} Matrix ( const int tn, const int tm ): n ( tn ), m ( tm ), mat {} {}
inline int* operator [] ( const int key ) { return mat[key]; }
inline Matrix operator * ( Matrix t ) {
assert ( m == t.n );
Matrix ret ( n, t.m );
for ( int i = 0; i <= n; ++ i ) {
for ( int k = 0; k <= m; ++ k ) {
for ( int j = 0; j <= t.m; ++ j ) {
ret[i][j] = ( ret[i][j] + 1ll * mat[i][k] * t[k][j] ) % p;
}
}
}
return ret;
}
};
inline Matrix qkpow ( Matrix A, int b ) {
Matrix ret ( A.n, A.m );
for ( int i = 0; i <= A.n; ++ i ) ret[i][i] = 1;
for ( ; b; A = A * A, b >>= 1 ) if ( b & 1 ) ret = ret * A;
return ret;
}
int main () {
int T;
for ( scanf ( "%d", &T ); T --; memset ( K, 0, sizeof K ) ) {
scanf ( "%d %d %d %d", &n, &m, &p, &q );
for ( int i = 1, u, v; i <= m; ++ i ) scanf ( "%d %d", &u, &v ), add ( u, v );
int tree = det ( n );
if ( ! tree || q < n - 1 ) { puts ( "0" ); continue; }
Matrix F ( 0, n - 1 ), T ( n - 1, n - 1 );
F[0][0] = 1;
for ( int i = 0; i < n; ++ i ) {
T[i][i] = i;
if ( i ) T[i - 1][i] = n - i;
}
F = F * qkpow ( T, q );
printf ( "%d\n", int ( 1ll * tree * F[0][n - 1] % p ) );
}
return 0;
}
Solution -「HDU 5498」Tree的更多相关文章
- Solution -「HDU 6875」Yajilin
\(\mathcal{Description}\) Link.(HDU 裂开了先放个私链 awa.) 在一个 \(n\times n\) 的方格图中,格子 \((i,j)\) 有权值 \(w_ ...
- Solution -「HDU 6643」Ridiculous Netizens
\(\mathcal{Description}\) Link. 给定一棵含有 \(n\) 个结点的树,点 \(u\) 有点权 \(w_u\),求树上非空连通块的数量,使得连通块内点权积 \(\ ...
- Solution -「ARC 125F」Tree Degree Subset Sum
\(\mathcal{Description}\) Link. 给定含有 \(n\) 个结点的树,求非负整数对 \((x,y)\) 的数量,满足存在 \(\exist S\subseteq V ...
- Solution -「Gym 102798K」Tree Tweaking
\(\mathcal{Description}\) Link. 给定排列 \(\{p_n\}\),求任意重排 \(p_{l..r}\) 的元素后,将 \(\{p_n\}\) 依次插入二叉搜索树 ...
- Solution -「HDU 1788」CRT again
\(\mathcal{Description}\) Link. 解同余方程组: \[x\equiv m_i-a\pmod{m_i} \] 其中 \(i=1,2,\dots,n\). \ ...
- Solution -「HDU #6566」The Hanged Man
\(\mathcal{Description}\) Link. 给定一棵含 \(n\) 个点的树,每个结点有两个权值 \(a\) 和 \(b\).对于 \(k\in[1,m]\),分别求 \[ ...
- Solution -「CF 1375G」Tree Modification
\(\mathcal{Description}\) Link. 给定一棵 \(n\) 个结点的树,每次操作选择三个结点 \(a,b,c\),满足 \((a,b),(b,c)\in E\),并令 ...
- Solution -「ARC 104E」Random LIS
\(\mathcal{Description}\) Link. 给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...
- Solution -「Gym 102759I」Query On A Tree 17
\(\mathcal{Description}\) Link. 给定一棵含 \(n\) 个结点的树,结点 \(1\) 为根,点 \(u\) 初始有点权 \(a_u=0\),维护 \(q\) 次 ...
随机推荐
- nuxt创建项目
1.使用 npm 安装 npm install -g vue-cli 2.安装nuxt项目 vue init nuxt-community/koa-template 项目名称 3.如果 vue-cli ...
- Echart可视化学习(一)
文档的源代码地址,需要的下载就可以了(访问密码:7567) https://url56.ctfile.com/f/34653256-527823386-04154f 正文: 创建需要的目录结构及文件 ...
- 硬核 - Java 随机数相关 API 的演进与思考(上)
本系列将 Java 17 之前的随机数 API 以及 Java 17 之后的统一 API 都做了比较详细的说明,并且将随机数的特性以及实现思路也做了一些简单的分析,帮助大家明白为何会有这么多的随机数算 ...
- 07.python函数作用域global、nonlocal、LEGB
函数作用域 作用域 一个标识符的课件范围,这就是标识符的作用域,一般常说的是变量的作用域 def foo(): x = 100 print(x) # 可以访问到吗 上例中x不可以访问到,会抛出异 ...
- HDU 2084 数塔 (动态规划DP)
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=2084 题目分析:此题采用动态规划自底向上计算,如果我们要知道所走之和最大,那么最后一步肯定是走最后一排 ...
- 用格里高利公式求给定精度的PI值
本题要求编写程序,计算序列部分和 4∗(1−1/3+1/5−1/7+...) ,直到最后一项的绝对值小于给定精度eps. 输入格式: 输入在一行中给出一个正实数eps. 输出格式: 在一行中按照&qu ...
- 【Java】java基础
文章目录 Java基础 1 注释.标识符.关键字 1.1 注释 1.2 关键字 1.3 标识符 1.4 数据类型 1.4.1 基本类型 1.4.2 引用类型 1.4.3 整数类型拓展 1.4.4 浮点 ...
- 《剑指offer》面试题33. 二叉搜索树的后序遍历序列
问题描述 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历结果.如果是则返回 true,否则返回 false.假设输入的数组的任意两个数字都互不相同. 参考以下这颗二叉搜索树: 5 / \ ...
- 《剑指offer》面试题58 - I. 翻转单词顺序
问题描述 输入一个英文句子,翻转句子中单词的顺序,但单词内字符的顺序不变.为简单起见,标点符号和普通字母一样处理.例如输入字符串"I am a student. ",则输出&quo ...
- leeetcode 20. 有效的括号
20. 有效的括号 问题描述 给定一个只包括 '(',')','{','}','[',']' 的字符串,判断字符串是否有效. 有效字符串需满足: 左括号必须用相同类型的右括号闭合. 左括号必须以正确的 ...