*倍增LCA:

  设$f[u][k]$表示u的$2^k$辈祖先,即从$u$向根节点走$2^k$步到达的节点,特别的,若该节点不存在,则$f[u][k]$=0.$f[u][0]$就是$x$的父亲节点。因为$u$向根节点$2^k$$\rightarrow$向根节点走$2^{k-1}$,再走$2^{k-1}$步。所以对于 k∈ [1,logn] ,有$f[u][k]=f[f[u][k-1]]]k-1]$。$f$数组利用了递推的思想。递推式为$f[u][k]=f[f[u][k-1]][k-1]$。因此,我们可以对树进行DFS

 inline void Deal_first(int u,int fa)
{
dep[u]=dep[fa]+;
for(int i=;i<;i++)
f[u][i+]=f[f[u][i]][i];
for(int i=head[u];i;i=t[i].nex)
{
int v=t[i].to;
if(v==fa) continue;
f[v][]=u;
Deal_first(v,u);
}
return;
}

①设$dep[x]$表示$x$的深度。那么设$dep[x]\ge dep[y]$。(否则可交换$x,y$)

②利用二进制拆分的思想,把$x$向上调整到与$y$同一深度。即:依次尝试从$x$向上走$k$=$2^{logn}……2^1 ,2^0$步,若到达的点比$y$深,则令$x=f[x][k]$

③若此时$x=y$,则说明已经找到了$LCA$,两点的$LCA$就等于$y$。

④若此时的 $x$ ≠ $y$ ,那么 $x$,$y$ 同时向上调整,并保持深度一致且二者不会相会。依次尝试把 $x$, $y$ 同时向上走$k$=$2^{logn}……2^1 ,2^0$步,若$f[x][k]$≠ $f[y][k]$,则令$x=f[x][k],y=f[y][k]$。

⑤此时 $x$,$y$ 必定只差一步就相会了,他们的父节点 $f[x][0]$就是 $LCA$。

 #include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define maxn 501000
int n,m,s;
int dep[maxn<<];
int f[maxn<<][];
int head[maxn<<],cnt=;
struct hh
{
int nex,to;
}t[maxn<<];
inline void add(int nex,int to)
{
t[++cnt].nex=head[nex];
t[cnt].to=to;
head[nex]=cnt;
}
inline void Deal_first(int u,int fa)
{
dep[u]=dep[fa]+;
for(int i=;i<;i++)
f[u][i+]=f[f[u][i]][i];
for(int i=head[u];i;i=t[i].nex)
{
int v=t[i].to;
if(v==fa) continue;
f[v][]=u;
Deal_first(v,u);
}
return;
}
inline int LCA(int x,int y)
{
if(dep[x]<dep[y]) swap(x,y);
for(int i=;i>=;i--)
{
if(dep[f[x][i]]>=dep[y]) x=f[x][i];
if(x==y) return x;
}
for(int i=;i>=;i--)
{
if(f[x][i]!=f[y][i])
{
x=f[x][i];
y=f[y][i];
}
}
return f[x][];
}
inline int read()
{
int kr=,xs=;
char ls;
ls=getchar();
while(!isdigit(ls))
{
if(!(ls^))
kr=-;
ls=getchar();
}
while(isdigit(ls))
{
xs=(xs<<)+(xs<<)+(ls^);
ls=getchar();
}
return xs*kr;
}
int main()
{
int x,y;
n=read();m=read();s=read();
for(int i=;i<n;i++)
{
x=read();y=read();
add(x,y);
add(y,x);
}
Deal_first(s,);
for(int i=;i<=m;i++)
{
x=read();y=read();
printf("%d\n",LCA(x,y));
}
return ;
}

LCA--P3379 【模板】最近公共祖先(LCA)的更多相关文章

  1. [模板] 最近公共祖先/lca

    简介 最近公共祖先 \(lca(a,b)\) 指的是a到根的路径和b到n的路径的深度最大的公共点. 定理. 以 \(r\) 为根的树上的路径 \((a,b) = (r,a) + (r,b) - 2 * ...

  2. HDU 2586 How far away ?(LCA模板 近期公共祖先啊)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 Problem Description There are n houses in the vi ...

  3. Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集)

    Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集) Description sideman做好了回到Gliese 星球的硬件准备,但是sideman的导航系统还没有完全设计好.为 ...

  4. POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)

    POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...

  5. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  6. 【lhyaaa】最近公共祖先LCA——倍增!!!

    高级的算法——倍增!!! 根据LCA的定义,我们可以知道假如有两个节点x和y,则LCA(x,y)是 x 到根的路 径与 y 到根的路径的交汇点,同时也是 x 和 y 之间所有路径中深度最小的节 点,所 ...

  7. 【洛谷 p3379】模板-最近公共祖先(图论--倍增算法求LCA)

    题目:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 解法:倍增. 1 #include<cstdio> 2 #include<cstdlib> 3 #include ...

  8. 最近公共祖先(LCA)模板

    以下转自:https://www.cnblogs.com/JVxie/p/4854719.html 首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖 ...

  9. luogu3379 【模板】最近公共祖先(LCA) 倍增法

    题目大意:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 整体步骤:1.使两个点深度相同:2.使两个点相同. 这两个步骤都可用倍增法进行优化.定义每个节点的Elder[i]为该节点的2^k( ...

  10. 最近公共祖先lca模板

    void dfs(int x,int root){//预处理fa和dep数组 fa[x][0]=root; dep[x]=dep[root]+1; for(int i=1;(1<<i)&l ...

随机推荐

  1. SpringMVC之ModelAndView的用法

    https://blog.csdn.net/qq30211478/article/details/78016155

  2. JavaScript 的一些SAO操作

    IE判断检测 jQuery 在 1.9 版本之前,提供了一个浏览器对象检测的属性 .browser 的替代方案.于是各种利用 IE bug 的检测方法被搜了出来: // IE 678 最短方法 var ...

  3. Linux每日练习-复习紧急救援模式下重改root权限密码 20200225

  4. android导入项目build错误

    android studio apply script build.gradle 卡死 buildscript { repositories { maven{ url 'http://maven.al ...

  5. 九十二、SAP中ALV事件之六,复制一个标准工具栏到自己的程序

    一.我们来到SE41,点击复制状态按钮 二.点击复制状态后,弹出一个框框,上面是模板内容,下面是我们自己的程序 三.我们根据上一篇的标准模板内容,填好相应的模板和我们的程序的内容 三.点击复制按钮 五 ...

  6. 148-PHP strip_tags函数,剥去字符串中的 HTML 标签(二)

    <?php //定义一段包含PHP代码的字符串 $php=<<<PHP 这里是PHP代码的开始 <?php echo "hello!"; PHP; $ ...

  7. mysql多表连接查询

    新建两张表: 表1:student  截图如下: 表2:course  截图如下: (此时这样建表只是为了演示连接SQL语句,当然实际开发中我们不会这样建表,实际开发中这两个表会有自己不同的主键.) ...

  8. 留学Essay写作关键:Intensive Reading

    留学生的日常除了写写写还是写写写,有时候还是要换换口味.在自己没有作业压力的时候可以尝试去读一些相关书籍或者一些优秀的essay.当然了,这里的阅读可不是走马观花,囫囵吞枣的读,而是用心去“精读”.那 ...

  9. 八、React实战:可交互待办事务表(表单使用、数据的本地缓存local srtorage、生命同期函数(页面加载就会执行函数名固定为componentDidMount()))

    一.项目功能概述 示例网址:http://www.todolist.cn/ 功能: 输入待做事项,回车,把任务添加到 [正在进行] [正在进行] 任务,勾选之后,变成已[经完成事项] [已完成事务], ...

  10. 五、React事件方法(自写一个方法(函数),然后用按钮onClick触发它、自写方法改变this指向3种写法、

    上接:https://www.cnblogs.com/chenxi188/p/11782349.html 项目目录: my-app/ README.md node_modules/ package.j ...