LCA--P3379 【模板】最近公共祖先(LCA)
*倍增LCA:
设$f[u][k]$表示u的$2^k$辈祖先,即从$u$向根节点走$2^k$步到达的节点,特别的,若该节点不存在,则$f[u][k]$=0.$f[u][0]$就是$x$的父亲节点。因为$u$向根节点$2^k$$\rightarrow$向根节点走$2^{k-1}$,再走$2^{k-1}$步。所以对于 k∈ [1,logn] ,有$f[u][k]=f[f[u][k-1]]]k-1]$。$f$数组利用了递推的思想。递推式为$f[u][k]=f[f[u][k-1]][k-1]$。因此,我们可以对树进行DFS
inline void Deal_first(int u,int fa)
{
dep[u]=dep[fa]+;
for(int i=;i<;i++)
f[u][i+]=f[f[u][i]][i];
for(int i=head[u];i;i=t[i].nex)
{
int v=t[i].to;
if(v==fa) continue;
f[v][]=u;
Deal_first(v,u);
}
return;
}
①设$dep[x]$表示$x$的深度。那么设$dep[x]\ge dep[y]$。(否则可交换$x,y$)
②利用二进制拆分的思想,把$x$向上调整到与$y$同一深度。即:依次尝试从$x$向上走$k$=$2^{logn}……2^1 ,2^0$步,若到达的点比$y$深,则令$x=f[x][k]$
③若此时$x=y$,则说明已经找到了$LCA$,两点的$LCA$就等于$y$。
④若此时的 $x$ ≠ $y$ ,那么 $x$,$y$ 同时向上调整,并保持深度一致且二者不会相会。依次尝试把 $x$, $y$ 同时向上走$k$=$2^{logn}……2^1 ,2^0$步,若$f[x][k]$≠ $f[y][k]$,则令$x=f[x][k],y=f[y][k]$。
⑤此时 $x$,$y$ 必定只差一步就相会了,他们的父节点 $f[x][0]$就是 $LCA$。
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define maxn 501000
int n,m,s;
int dep[maxn<<];
int f[maxn<<][];
int head[maxn<<],cnt=;
struct hh
{
int nex,to;
}t[maxn<<];
inline void add(int nex,int to)
{
t[++cnt].nex=head[nex];
t[cnt].to=to;
head[nex]=cnt;
}
inline void Deal_first(int u,int fa)
{
dep[u]=dep[fa]+;
for(int i=;i<;i++)
f[u][i+]=f[f[u][i]][i];
for(int i=head[u];i;i=t[i].nex)
{
int v=t[i].to;
if(v==fa) continue;
f[v][]=u;
Deal_first(v,u);
}
return;
}
inline int LCA(int x,int y)
{
if(dep[x]<dep[y]) swap(x,y);
for(int i=;i>=;i--)
{
if(dep[f[x][i]]>=dep[y]) x=f[x][i];
if(x==y) return x;
}
for(int i=;i>=;i--)
{
if(f[x][i]!=f[y][i])
{
x=f[x][i];
y=f[y][i];
}
}
return f[x][];
}
inline int read()
{
int kr=,xs=;
char ls;
ls=getchar();
while(!isdigit(ls))
{
if(!(ls^))
kr=-;
ls=getchar();
}
while(isdigit(ls))
{
xs=(xs<<)+(xs<<)+(ls^);
ls=getchar();
}
return xs*kr;
}
int main()
{
int x,y;
n=read();m=read();s=read();
for(int i=;i<n;i++)
{
x=read();y=read();
add(x,y);
add(y,x);
}
Deal_first(s,);
for(int i=;i<=m;i++)
{
x=read();y=read();
printf("%d\n",LCA(x,y));
}
return ;
}
LCA--P3379 【模板】最近公共祖先(LCA)的更多相关文章
- [模板] 最近公共祖先/lca
简介 最近公共祖先 \(lca(a,b)\) 指的是a到根的路径和b到n的路径的深度最大的公共点. 定理. 以 \(r\) 为根的树上的路径 \((a,b) = (r,a) + (r,b) - 2 * ...
- HDU 2586 How far away ?(LCA模板 近期公共祖先啊)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 Problem Description There are n houses in the vi ...
- Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集)
Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集) Description sideman做好了回到Gliese 星球的硬件准备,但是sideman的导航系统还没有完全设计好.为 ...
- POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)
POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
- 【lhyaaa】最近公共祖先LCA——倍增!!!
高级的算法——倍增!!! 根据LCA的定义,我们可以知道假如有两个节点x和y,则LCA(x,y)是 x 到根的路 径与 y 到根的路径的交汇点,同时也是 x 和 y 之间所有路径中深度最小的节 点,所 ...
- 【洛谷 p3379】模板-最近公共祖先(图论--倍增算法求LCA)
题目:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 解法:倍增. 1 #include<cstdio> 2 #include<cstdlib> 3 #include ...
- 最近公共祖先(LCA)模板
以下转自:https://www.cnblogs.com/JVxie/p/4854719.html 首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖 ...
- luogu3379 【模板】最近公共祖先(LCA) 倍增法
题目大意:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 整体步骤:1.使两个点深度相同:2.使两个点相同. 这两个步骤都可用倍增法进行优化.定义每个节点的Elder[i]为该节点的2^k( ...
- 最近公共祖先lca模板
void dfs(int x,int root){//预处理fa和dep数组 fa[x][0]=root; dep[x]=dep[root]+1; for(int i=1;(1<<i)&l ...
随机推荐
- Pycharm激活码(失效更新)
该方法不需要修改Hosts, 如果修改过请删除后再激活. 获取激活码: http://idea.medeming.com/jet/images/jihuoma.txt http://idea.mede ...
- MyBatis Generator 下划线转驼峰命名
MyBatis Generator配置文件--指定生成实体类使用实际的表列名作为实体类的属性名 table标签下的设置属性useActualColumnNames用于指定生成实体类时是否使用实际的列名 ...
- 026、MySQL取字符串左边,取字符串右边,取字符串中间,取文本开始位置
#取文本左边 ); #田 ); #田攀 ); #田攀5 #取文本右边 ); # ); # ); #攀52 #取文本中间 '); #田攀 '); #攀5 #从字符串s中获取s1的开始位置 不忘初心,如果 ...
- JavaScript基于原型的继承
在一个纯粹的原型模式中,我们会摒弃类,转而专注于对象,基于原型的继承相比基于类的继承的概念上更为简单 if( typeof Object.beget !== 'function') { Object. ...
- ubuntu18.04.2 Hadoop伪集群搭建
准备工作: 若没有下载vim请下载vim 若出现 Could not get lock /var/lib/dpkg/lock 问题请参考: https://jingyan.baidu.com/arti ...
- arduino 通过串口接收string,int类型数据
串口接收string类型数据源码如下 String comdata = ""; void setup() { Serial.begin(9600); } void lo ...
- 利用vim查看日志,快速定位问题《转载》
利用vim查看日志,快速定位问题 链接:https://www.cnblogs.com/abcwt112/p/5192944.html
- cf 543 D. Road Improvement
(懒得想了,,又是DP) #include<bits/stdc++.h> #define N 200005 #define LL long long #define inf 0x3f3f3 ...
- Bootstrap 侧边栏 导航栏
http://blog.csdn.net/shangmingchao/article/details/49763351 实测效果图:
- MacType
#前言 这几天实在是嫌弃Win10垃圾的字体渲染效果--发虚模糊,索性从网上找了个系统字体渲染软件即MacType给系统字体改头换面. #使用效果 这里贴出两个场景的效果对比(单击图片查看具体效果) ...