LCA--P3379 【模板】最近公共祖先(LCA)
*倍增LCA:
设$f[u][k]$表示u的$2^k$辈祖先,即从$u$向根节点走$2^k$步到达的节点,特别的,若该节点不存在,则$f[u][k]$=0.$f[u][0]$就是$x$的父亲节点。因为$u$向根节点$2^k$$\rightarrow$向根节点走$2^{k-1}$,再走$2^{k-1}$步。所以对于 k∈ [1,logn] ,有$f[u][k]=f[f[u][k-1]]]k-1]$。$f$数组利用了递推的思想。递推式为$f[u][k]=f[f[u][k-1]][k-1]$。因此,我们可以对树进行DFS
inline void Deal_first(int u,int fa)
{
dep[u]=dep[fa]+;
for(int i=;i<;i++)
f[u][i+]=f[f[u][i]][i];
for(int i=head[u];i;i=t[i].nex)
{
int v=t[i].to;
if(v==fa) continue;
f[v][]=u;
Deal_first(v,u);
}
return;
}
①设$dep[x]$表示$x$的深度。那么设$dep[x]\ge dep[y]$。(否则可交换$x,y$)
②利用二进制拆分的思想,把$x$向上调整到与$y$同一深度。即:依次尝试从$x$向上走$k$=$2^{logn}……2^1 ,2^0$步,若到达的点比$y$深,则令$x=f[x][k]$
③若此时$x=y$,则说明已经找到了$LCA$,两点的$LCA$就等于$y$。
④若此时的 $x$ ≠ $y$ ,那么 $x$,$y$ 同时向上调整,并保持深度一致且二者不会相会。依次尝试把 $x$, $y$ 同时向上走$k$=$2^{logn}……2^1 ,2^0$步,若$f[x][k]$≠ $f[y][k]$,则令$x=f[x][k],y=f[y][k]$。
⑤此时 $x$,$y$ 必定只差一步就相会了,他们的父节点 $f[x][0]$就是 $LCA$。
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define maxn 501000
int n,m,s;
int dep[maxn<<];
int f[maxn<<][];
int head[maxn<<],cnt=;
struct hh
{
int nex,to;
}t[maxn<<];
inline void add(int nex,int to)
{
t[++cnt].nex=head[nex];
t[cnt].to=to;
head[nex]=cnt;
}
inline void Deal_first(int u,int fa)
{
dep[u]=dep[fa]+;
for(int i=;i<;i++)
f[u][i+]=f[f[u][i]][i];
for(int i=head[u];i;i=t[i].nex)
{
int v=t[i].to;
if(v==fa) continue;
f[v][]=u;
Deal_first(v,u);
}
return;
}
inline int LCA(int x,int y)
{
if(dep[x]<dep[y]) swap(x,y);
for(int i=;i>=;i--)
{
if(dep[f[x][i]]>=dep[y]) x=f[x][i];
if(x==y) return x;
}
for(int i=;i>=;i--)
{
if(f[x][i]!=f[y][i])
{
x=f[x][i];
y=f[y][i];
}
}
return f[x][];
}
inline int read()
{
int kr=,xs=;
char ls;
ls=getchar();
while(!isdigit(ls))
{
if(!(ls^))
kr=-;
ls=getchar();
}
while(isdigit(ls))
{
xs=(xs<<)+(xs<<)+(ls^);
ls=getchar();
}
return xs*kr;
}
int main()
{
int x,y;
n=read();m=read();s=read();
for(int i=;i<n;i++)
{
x=read();y=read();
add(x,y);
add(y,x);
}
Deal_first(s,);
for(int i=;i<=m;i++)
{
x=read();y=read();
printf("%d\n",LCA(x,y));
}
return ;
}
LCA--P3379 【模板】最近公共祖先(LCA)的更多相关文章
- [模板] 最近公共祖先/lca
简介 最近公共祖先 \(lca(a,b)\) 指的是a到根的路径和b到n的路径的深度最大的公共点. 定理. 以 \(r\) 为根的树上的路径 \((a,b) = (r,a) + (r,b) - 2 * ...
- HDU 2586 How far away ?(LCA模板 近期公共祖先啊)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 Problem Description There are n houses in the vi ...
- Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集)
Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集) Description sideman做好了回到Gliese 星球的硬件准备,但是sideman的导航系统还没有完全设计好.为 ...
- POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)
POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
- 【lhyaaa】最近公共祖先LCA——倍增!!!
高级的算法——倍增!!! 根据LCA的定义,我们可以知道假如有两个节点x和y,则LCA(x,y)是 x 到根的路 径与 y 到根的路径的交汇点,同时也是 x 和 y 之间所有路径中深度最小的节 点,所 ...
- 【洛谷 p3379】模板-最近公共祖先(图论--倍增算法求LCA)
题目:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 解法:倍增. 1 #include<cstdio> 2 #include<cstdlib> 3 #include ...
- 最近公共祖先(LCA)模板
以下转自:https://www.cnblogs.com/JVxie/p/4854719.html 首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖 ...
- luogu3379 【模板】最近公共祖先(LCA) 倍增法
题目大意:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 整体步骤:1.使两个点深度相同:2.使两个点相同. 这两个步骤都可用倍增法进行优化.定义每个节点的Elder[i]为该节点的2^k( ...
- 最近公共祖先lca模板
void dfs(int x,int root){//预处理fa和dep数组 fa[x][0]=root; dep[x]=dep[root]+1; for(int i=1;(1<<i)&l ...
随机推荐
- 064、Java中递归调用
01.代码如下: package TIANPAN; /** * 此处为文档注释 * * @author 田攀 微信382477247 */ public class TestDemo { public ...
- 抓包工具fiddler的Https证书设置
一.工具(option)--设置(setting)-- https-- 动作(actions)-- (open windows certificate manger)-- 搜索(fiddler)删除所 ...
- Java 文件
章节 Java 基础 Java 简介 Java 环境搭建 Java 基本语法 Java 注释 Java 变量 Java 数据类型 Java 字符串 Java 类型转换 Java 运算符 Java 字符 ...
- redis学习(四)
一.Redis 键(key) 1.Redis 键命令用于管理 redis 的键. 2.Redis 键命令的基本语法如下:redis 127.0.0.1:6379> COMMAND KEY_NAM ...
- weblogic-开发模式与生产模式互换
生产转开发 Step 1: 目标文件:domain/bin/setDomainEnv.sh 修改内容:PRODUCTION_MODE="true"改为PRODUCTION_MODE ...
- Golang的进制转换实战案例
Golang的进制转换实战案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.常用进制概述 1>.进制概述 进制也就是进位制,是人们规定的一种进位方法.举个例子:二进制就 ...
- 学校算法作业X——(日期问题)
最近一直在忙项目,难得有时间写一下作业,所以断了,现在赶紧续上 题目如下: 日历问题 问题描述 在我们现在使用的日历中, 闰年被定义为能被4整除的年份,但是能被100整除而不能被400整除的年是例外, ...
- http 请求code状态码
状态码 含义 100 客户端应当继续发送请求.这个临时响应是用来通知客户端它的部分请求已经被服务器接收,且仍未被拒绝.客户端应当继续发送请求的剩余部分,或者如果请求已经完成,忽略这个响应.服务器必须在 ...
- 小技巧:使用命令行打开vscode 以及 sublime 工具
vscode手动打开vscode command + shift + p 打开命令面板(或者点击菜单栏 查看>命令面板)输入 shell 选择 install code command in P ...
- 安装部署及升级到Exchange Server 2010
本文档详细的描述了,如何在Windows Server 2008 R2的环境下安装Exchange Server 2010,包括的内容有: 先检查组织环境: 1.请确保林的功能级别至少为 Wind ...