hdu4587 Two Nodes 求图中删除两个结点剩余的连通分量的数量
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4587
题目给了12000ms,对于tarjan这种O(|V|+|E|)复杂度的算法来说,暴力是能狗住的。可以对每个点进行枚举,然后对剩余的网络进行tarjan,对割点所能造成的最大的连通分量进行查询,也就是如下的方程。ans=max{cut[i]}+cnt 其中cnt删除第一个结点之后剩下的网络在初始时刻的连通分量的数量,也就是对每一个第一结点tarjan进行深搜的次数。另外,这次的tarjan中的cut数组存储的不再是这个点是否是割点,而是这个点“成为割点的次数”,也就是说,对于一个非根节点u来说,他有k个分支只能通过u来连接到u的祖先,所以u被删除之后就会多出来k个连通分量,这个cut的更新是在搜索完一个分支之后退回到u时更新的。对于根节点来说,由于他没有父结点,原先他所在的连通分量的分量数量为1,现在把它割掉,还剩k个子树的连通分量,也就是根节点使得连通分量的数量增加了k-1,这是不同于非根节点的。
注意根节点能增加的连通分量的数量的更新方式!对于根节点删除能增加多少子连通图数量,只要判断是不是父节点就可以,不应判断子树的数量,因为如果子树的数量大于1的话增加的连通块数量是child-1,当这个点是孤立点的时候删除这个结点的话连通块的数量实际上是减少的!!!!
代码如下:
#include<bits/stdc++.h>
using namespace std;
typedef unsigned int ui;
typedef long long ll;
typedef unsigned long long ull;
#define pf printf
#define mem(a,b) memset(a,b,sizeof(a))
#define prime1 1e9+7
#define prime2 1e9+9
#define pi 3.14159265
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define scand(x) scanf("%llf",&x)
#define f(i,a,b) for(int i=a;i<=b;i++)
#define scan(a) scanf("%d",&a)
#define mp(a,b) make_pair((a),(b))
#define P pair<int,int>
#define dbg(args) cout<<#args<<":"<<args<<endl;
#define inf 0x3f3f3f3f
const int maxn=;
const int maxm=;
int n,m,t;
int head[maxn],nxt[maxm],cut[maxn],dfn[maxn],low[maxn];
struct node{
int u,v;
}p[maxm];
int e;
int first;
int id;
void addedge(int u,int v)
{
p[e].u=u;
p[e].v=v;
nxt[e]=head[u];
head[u]=e++;
}
void tarjan(int u,int fa)
{
dfn[u]=low[u]=++id;
int child=;
for(int i=head[u];~i;i=nxt[i])
{
int v=p[i].v;
if(v==first||v==fa)continue;//假定了这个网络中没有first结点
if(!dfn[v])
{
child++;
tarjan(v,u);
low[u]=min(low[u],low[v]);
if(low[v]>=dfn[u]&&u!=fa)cut[u]++;//非根结点成为割点,可割的连通分量的数量增加
}
else if(dfn[v]<dfn[u]&&v!=fa)
{
low[u]=min(low[u],dfn[v]);
}
}
//下面这句更新方法是错误的,因为当儿子结点的个数是0的时候这个点就是孤立点,如果把它删去连通分量的数量会减少1!!!!!
// if(u==fa&&child>=1)cut[u]=child-1;
if(u==fa&&child>=)cut[u]=child-; //更新根节点的cut值的唯一方法是通过子树的数量-1
//注意此时如果根节点的child值是1的话更新之后是0,所以不能加child>1的条件
}
int main()
{
//freopen("input.txt","r",stdin);
//freopen("output.txt","w",stdout);
std::ios::sync_with_stdio(false);
while(scanf("%d%d",&n,&m)!=EOF)
{
int x,y;
f(i,,maxn-)head[i]=-,nxt[i]=-;
e=;
f(i,,m)
{
scanf("%d%d",&x,&y);
addedge(x,y);
addedge(y,x);
}
int curnum;
int ans=;
f(i,,n-)//枚举每一个点,再用tarjan对割点进行查找,找到割点增加连通分量最多的点。
{
f(j,,n-)dfn[j]=,cut[j]=;//要进行n次对这个网络的tarjan,每次都要清零
first=i;
curnum=;
id=;
f(j,,n-)
{
if(i==j)continue;
if(!dfn[j])
{
tarjan(j,j);
curnum++;
}
}
f(j,,n-)
{
if(j!=i) ans=max(ans,curnum+cut[j]);
}
}
pf("%d\n",ans);
}
return ;
}
hdu4587 Two Nodes 求图中删除两个结点剩余的连通分量的数量的更多相关文章
- [Swift]LeetCode882. 细分图中的可到达结点 | Reachable Nodes In Subdivided Graph
Starting with an undirected graph (the "original graph") with nodes from 0 to N-1, subdivi ...
- Floyd-Warshall求图中任意两点的最短路径
原创 除了DFS和BFS求图中最短路径的方法,算法Floyd-Warshall也可以求图中任意两点的最短路径. 从图中任取两点A.B,A到B的最短路径无非只有两种情况: 1:A直接到B这条路径即是最短 ...
- 用C语言把双向链表中的两个结点交换位置,考虑各种边界问题。
用C语言把双向链表中的两个结点交换位置,考虑各种边界问题. [参考] http://blog.csdn.net/silangquan/article/details/18051675
- [LeetCode] 882. Reachable Nodes In Subdivided Graph 细分图中的可到达结点
Starting with an undirected graph (the "original graph") with nodes from 0 to N-1, subdivi ...
- [LintCode] Swap Two Nodes in Linked List 交换链表中的两个结点
Given a linked list and two values v1 and v2. Swap the two nodes in the linked list with values v1 a ...
- 求二叉树中第K层结点的个数
一,问题描述 构建一棵二叉树(不一定是二叉查找树),求出该二叉树中第K层中的结点个数(根结点为第0层) 二,二叉树的构建 定义一个BinaryTree类来表示二叉树,二叉树BinaryTree 又是由 ...
- hdu 5952 Counting Cliques 求图中指定大小的团的个数 暴搜
题目链接 题意 给定一个\(n个点,m条边\)的无向图,找出其中大小为\(s\)的完全图个数\((n\leq 100,m\leq 1000,s\leq 10)\). 思路 暴搜. 搜索的时候判断要加进 ...
- poj The Settlers of Catan( 求图中的最长路 小数据量 暴力dfs搜索(递归回溯))
The Settlers of Catan Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 1123 Accepted: ...
- 083 Remove Duplicates from Sorted List 有序链表中删除重复的结点
给定一个排序链表,删除所有重复的元素使得每个元素只留下一个.案例:给定 1->1->2,返回 1->2给定 1->1->2->3->3,返回 1->2- ...
随机推荐
- Lambda表达式和函数试接口的最佳实践 · LiangYongrui's Studio
1.概述 本文主要深入研究java 8中的函数式接口和Lambda表达式,并介绍最佳实践. 2.使用标准的函数式接口 包java.util.function中的函数是接口已经可以满足大部分的java开 ...
- 你会选永生吗?NASA实验为火星宇航员提供年龄逆转药
宇宙辐射不仅是宇航员面临的问题.在乘坐飞机的过程中,我们所有人都会暴露在宇宙辐射中.一趟从伦敦到新加坡再到墨尔本的飞行中,人体受到的辐射量就相当于进行一次胸部X射线透视. 在去年12月NASA举 ...
- python复制多层目录下的文件至其他盘符对应的目录中
一.需求 app打包需要打入一些H5进去,以便更快的加载页面.这些H5文件是散落在各个文件夹中的[如下列所示],偶尔各个文件夹还需新增文件,每次新增一个文件,需要改动jenkins上job脚本,比较麻 ...
- PHP实现 3des加密解密
<?php /** * 3des加密 */ class Encrypt{ public function pkcs5_pad($text, $blocksize) { $pad = $block ...
- 菜鸟系列Golang学习 — 切片
切片简介 切片也是一种数据类型,在Golang中,切片底层基于数组实现的. 我们定义切片如下 var slice []int 切片之所以出现,是为了更好的利用资源,管理数据,如果使用数组,则我们一开始 ...
- PHPRAP v1.0.6 发布,修复因php7.1版本遗弃mcrypt扩展造成安装失败的BUG
PHPRAP,是一个PHP轻量级开源API接口文档管理系统,致力于减少前后端沟通成本,提高团队协作开发效率,打造PHP版的RAP. 更新记录 [修复]修复因php7.1版本遗弃mcrypt扩展造成安装 ...
- Rust入坑指南:智能指针
在了解了Rust中的所有权.所有权借用.生命周期这些概念后,相信各位坑友对Rust已经有了比较深刻的认识了,今天又是一个连环坑,我们一起来把智能指针刨出来,一探究竟. 智能指针是Rust中一种特殊的数 ...
- 基于Ubuntu+Python+Tensorflow+Jupyter notebook搭建深度学习环境
基于Ubuntu+Python+Tensorflow+Jupyter notebook搭建深度学习环境 前言一.环境准备环境介绍软件下载VMware下安装UbuntuUbuntu下Anaconda的安 ...
- nes 红白机模拟器 第4篇 linux 手柄驱动支持
小霸王学习机的真实手柄,实测CPU 占用 80% 接线图: 手柄读时序: joypad.c 驱动: 普通的字符设备驱动. #include <linux/module.h> #includ ...
- 使用twisted将mysql插入变成异步执行
python 异步MySQL存库 对于异步框架而言,这些延迟是无法接受的.因此, Twisted 提供了 twisted.enterprise.adbapi, 遵循DB-API 2.0协议的一个异 ...