mysql系列--sql实现原理
count(*)
MyISAM 引擎把⼀个表的总⾏数存在了磁盘上,因此执⾏ count(*) 的时候会直接返回这个数,效率很⾼;但是加了条件则不能快速返回
⽽ InnoDB 引擎就麻烦了,它执⾏ count(*) 的时候,需要把数据⼀⾏⼀⾏地从引擎⾥⾯读出来,然后累积计数。
InnoDB选择一行行计算是因为不同事物中读物到的数量不同,单行读取能保证事物数据的正确性。
针对count(*)mysql做了优化,普通索引比主键索引数据少,count(*)对于每个索引计算出的值都是相同的,mysql优化器会选择最小的索引树遍历
MyISAM 表虽然 count(*) 很快,但是不⽀持事务;
show table status 命令虽然返回很快,但是不准确;
InnoDB 表直接 count(*) 会遍历全表,虽然结果准确,但会导致性能问题。
对于频繁查询总数的场景,可自己记录表总数
缓存计数:启动redis查询总数后续自己维护数量增减,但是增减redis数量和数据库插入数据之间不是原子操作会导致实际数量和数据有出入,同时不支持分布式事物。
数据库计数:数据库中保存每个表的总数,利用事物达到数量和实际数据的一致性
⾸先要弄清楚 count() 的语义。count() 是⼀个聚合函数,对于返回的结果集,⼀⾏⾏地判断,如果 count 函数的参数不是 NULL,累计值就加 1,否则不加。最后返回累计值。
所以,count(*)、count(主键 id) 和 count(1) 都表示返回满⾜条件的结果集的总⾏数;⽽count(字段),则表示返回满⾜条件的数据⾏⾥⾯,参数“字段”不为 NULL 的总个数。
⾄于分析性能差别的时候,你可以记住这么⼏个原则:
1. server 层要什么就给什么;
2. InnoDB 只给必要的值;
3. 现在的优化器只优化了 count(*) 的语义为“取⾏数”,其他“显⽽易⻅”的优化并没有做。
count(主键 id) ,InnoDB 引擎会遍历整张表,把每⼀⾏的 id 值都取出来,返回给server 层。server 层拿到 id 后,判断是不可能为空的,就按⾏累加。
count(1) ,InnoDB 引擎遍历整张表,但不取值。server 层对于返回的每⼀⾏,放⼀个数字“1”进去,判断是不可能为空的,按⾏累加。
单看这两个⽤法的差别的话,你能对⽐出来,count(1) 执⾏得要⽐ count(主键 id) 快。因为从引擎返回 id 会涉及到解析数据⾏,以及拷⻉字段值的操作。
 count(字段) :
1. 如果这个“字段”是定义为 not null 的话,⼀⾏⾏地从记录⾥⾯读出这个字段,判断不能为null,按⾏累加;
2. 如果这个“字段”定义允许为 null,那么执⾏的时候,判断到有可能是 null,还要把值取出来再判断⼀下,不是 null 才累加。
也就是前⾯的第⼀条原则,server 层要什么字段,InnoDB 就返回什么字段。
但是 count(*) 是例外,并不会把全部字段取出来,⽽是专⻔做了优化,不取值。count(*) 肯定不是 null,按⾏累加。
主键 id 肯定⾮空啊,为什么不能按照count(*) 来处理优化下,因为类似优化过多,count(*)已优化,其他暂不优化
结论是:按照效率排序的话,count(字段)<count(主键 id)<count(1)≈count(*),所以我建议你,尽量使⽤ count(*)。
自测结论:selct(1)>select(*)>select(自增主键)>select(业务数字主键)>select(业务字符型主键)>select(普通唯一索引)
order by
全字段排序
MySQL 会给每个线程分配⼀块内存⽤于排序,称为 sort_buffer。

select city,name,age from t where city='杭州' order by name limit 1000;
1. 初始化 sort_buffer,确定放⼊ name、city、age 这三个字段;
2. 从索引 city 找到第⼀个满⾜ city='杭州’条件的主键 id,也就是图中的 ID_X;
3. 到主键 id 索引取出整⾏,取 name、city、age 三个字段的值,存⼊ sort_buffer 中;
4. 从索引 city 取下⼀个记录的主键 id;
5. 重复步骤 3、4 直到 city 的值不满⾜查询条件为⽌,对应的主键 id 也就是图中的 ID_Y;
6. 对 sort_buffer 中的数据按照字段 name 做快速排序;
7. 按照排序结果取前 1000 ⾏返回给客户端。
“按 name 排序”这个动作,可能在内存中完成,也可能需要使⽤外部排序,这取决于排序所需的内存和参数 sort_buffer_size。
sort_buffer_size,就是 MySQL 为排序开辟的内存(sort_buffer)的⼤⼩。如果要排序的数据量⼩于 sort_buffer_size,排序就在内存中完成。但如果排序数据量太⼤,内存放不下,则不得不利⽤磁盘临时⽂件辅助排序。
rowid 排序
在上⾯这个算法过程⾥⾯,只对原表的数据读了⼀遍,剩下的操作都是在 sort_buffer 和临时⽂件中执⾏的,问题在于字段多时内存只能存放少量数据,需要分成许多临时文件,效率低
SET max_length_for_sort_data = 16;
max_length_for_sort_data,是 MySQL 中专⻔控制⽤于排序的⾏数据的⻓度的⼀个参数。意思是,如果单⾏的⻓度超过这个值,MySQL 就认为单⾏太⼤,要换⼀个算法
city、name、age 这三个字段的定义总⻓度是 36,我把 max_length_for_sort_data 设置为16,换新算法:
新的算法放⼊ sort_buffer 的字段,只有要排序的列(即 name 字段)和主键 id。
但这时,排序的结果就因为少了 city 和 age 字段的值,不能直接返回了,整个执⾏流程就变成如下所示的样⼦:
1. 初始化 sort_buffer,确定放⼊两个字段,即 name 和 id;
2. 从索引 city 找到第⼀个满⾜ city='杭州’条件的主键 id,也就是图中的 ID_X;
3. 到主键 id 索引取出整⾏,取 name、id 这两个字段,存⼊ sort_buffer 中;
4. 从索引 city 取下⼀个记录的主键 id;
5. 重复步骤 3、4 直到不满⾜ city='杭州’条件为⽌,也就是图中的 ID_Y;
6. 对 sort_buffer 中的数据按照字段 name 进⾏排序;
7. 遍历排序结果,取前 1000 ⾏,并按照 id 的值回到原表中取出 city、name 和 age 三个字段返回给客户端。
即:通过where条件找到排序字段和id放到sort_buffer中,排序后通过id到原表中取出结果返回。
排序是个耗性能的操作,可通过将排序字段和筛选字段做成联合索引,天然有序,或者使用覆盖索引
小惊喜
1、积少成多,下载高佣联盟,领取各大平台隐藏优惠券,每次购物省个十块八块不香吗,通过下方二维码注册的用户可添加微信liershuang123(微信号)领取价值千元海量学习视频。
为表诚意奉献部分资料:
软件电子书:链接:https://pan.baidu.com/s/1_cUtPtZZbtYTF7C_jwtxwQ 提取码:8ayn
架构师二期:链接:https://pan.baidu.com/s/1yMhDFVeGpTO8KTuRRL4ZsA 提取码:ui5v
架构师阶段课程:链接:https://pan.baidu.com/s/16xf1qVhoxQJVT_jL73gc3A 提取码:2k6j
 
        
   
2、本人重金购买付费前后端分离脚手架源码一套,现10元出售,加微信liershuang123获取源码



mysql系列--sql实现原理的更多相关文章
- MySQL系列(九)--InnoDB索引原理
		InnoDB在MySQL5.6版本后作为默认存储引擎,也是我们大部分场景要使用的,而InnoDB索引通过B+树实现,叫做B-tree索引.我们默认创建的 索引就是B-tree索引,所以理解B-tree ... 
- MySQL系列(七)--SQL优化的步骤
		前面讲了如何设计数据库表结构.存储引擎.索引优化等内存,这篇文章会讲述如何进行SQL优化,也是面试中关于数据库肯定会被问到的, 这些内容不仅仅是为了面试,更重要的是付诸实践,最终用到工作当中 之前的M ... 
- 无法复现的“慢”SQL《死磕MySQL系列 八》
		系列文章 四.S 锁与 X 锁的爱恨情仇<死磕MySQL系列 四> 五.如何选择普通索引和唯一索引<死磕MySQL系列 五> 六.五分钟,让你明白MySQL是怎么选择索引< ... 
- MySQL 系列(四)主从复制、备份恢复方案生产环境实战
		第一篇:MySQL 系列(一) 生产标准线上环境安装配置案例及棘手问题解决 第二篇:MySQL 系列(二) 你不知道的数据库操作 第三篇:MySQL 系列(三)你不知道的 视图.触发器.存储过程.函数 ... 
- MySQL系列:高可用架构之MHA
		前言 从11年毕业到现在,工作也好些年头,入坑mysql也有近四年的时间,也捣鼓过像mongodb.redis.cassandra.neo4j等Nosql数据库.其实一直想写博客分享下工作上的零零碎碎 ... 
- Mysql系列八:Mycat和Sharding-jdbc的区别、Mycat分片join、Mycat分页中的坑、Mycat注解、Catlet使用
		一.Mycat和Sharding-jdbc的区别 1)mycat是一个中间件的第三方应用,sharding-jdbc是一个jar包 2)使用mycat时不需要改代码,而使用sharding-jdbc时 ... 
- MySQL系列(一)--基础知识(转载)
		安装就不说了,网上多得是,我的MySQL是8.0版本,可以参考:CentOS7安装MySQL8.0图文教程和MySQL8.0本地访问设置为远程访问权限 我的MySQL安装在阿里云上面,阿里云向外暴露端 ... 
- MySQL强人“锁”难《死磕MySQL系列 三》
		系列文章 一.原来一条select语句在MySQL是这样执行的<死磕MySQL系列 一> 二.一生挚友redo log.binlog<死磕MySQL系列 二> 前言 最近数据库 ... 
- 什么?还在用delete删除数据《死磕MySQL系列 九》
		系列文章 五.如何选择普通索引和唯一索引<死磕MySQL系列 五> 六.五分钟,让你明白MySQL是怎么选择索引<死磕MySQL系列 六> 七.字符串可以这样加索引,你知吗?& ... 
随机推荐
- Js对于数组去重提高效率一些心得
			最近在找工作,好几次面试都问过数组去重的问题.虽然问的都不一样,但是核心思想是没有变的. 第一种是比较常规的方法 思路: 构建一个新的数组存放结果 for循环中每次从原数组中取出一个元素,用这个元素循 ... 
- 前端开发个人小结 · Retrospection的博客
			序 2018年转眼来到了最后一个月,算下来我进入前端之门也有一年了,虽然下半年由于忙于筹备毕业论文的相关事项,前端这一块有所放下,但是想想还是给自己这一年的学习做一个总结. 现代化软件开发确实是一个复 ... 
- 万达乐园VS阿里帝国 谁将是未来娱乐产业的龙头?
			国内实体行业大佬王健林和互联网行业巨头马云,这次又不约而同地想到一块去了.从王健林叫板迪士尼大搞借势营销,到最近马云成立大文娱工作领导小组,明显的趋势表明娱乐越来越成为各界大佬们未来掘金的新战场.只不 ... 
- bp(net core)+easyui+efcore实现仓储管理系统——入库管理之二(三十八)
			abp(net core)+easyui+efcore实现仓储管理系统目录 abp(net core)+easyui+efcore实现仓储管理系统——ABP总体介绍(一) abp(net core)+ ... 
- 数据库及MySQL概述
			#什么是数据 用来描述事物的符号记录.可以是数字.文字.图形等,有多种形式,经过数字化之后存入计算机 #什么是数据库 数据库(Database)就是一个用来存放数据库的仓库,是按照一定的数据结构来组织 ... 
- C#开发BIMFACE系列30 服务端API之模型对比1:发起模型对比
			系列目录 [已更新最新开发文章,点击查看详细] 在实际项目中,由于需求变更经常需要对模型文件进行修改.为了便于用户了解模型在修改前后发生的变化,BIMFACE提供了模型在线对比功能,可以利用在 ... 
- 逆向破解之160个CrackMe —— 001(上)
			CrackMe--001 前置知识介绍: 160 CrackMe 是比较适合新手学习逆向破解的CrackMe的一个集合,一共160个待逆向破解的程序 CrackMe:一些公开给别人尝试破解的小程序,制 ... 
- LeetCode python实现题解(持续更新)
			目录 LeetCode Python实现算法简介 0001 两数之和 0002 两数相加 0003 无重复字符的最长子串 0004 寻找两个有序数组的中位数 0005 最长回文子串 0006 Z字型变 ... 
- 2,Java中的数据结构
			1,字符串(String) ···String为特殊的引用类型,不可变. ···常用实例方法: 获取子串:substring(start, end); 获取索引:indexOf(cha ... 
- 通读Python官方文档之cgitb
			cgitb CGI脚本异常管理 源代码:Lib/cgitb.py cgitb模块为Python脚本提供了一个特殊的异常管理器.名字有点误导人,它最初设计是为了以HTML格式展示cgi脚本的大量异常信息 ... 
