HBase Filter 过滤器之 ValueFilter 详解
前言:本文详细介绍了 HBase ValueFilter 过滤器 Java&Shell API 的使用,并贴出了相关示例代码以供参考。ValueFilter 基于列值进行过滤,在工作中涉及到需要通过HBase 列值进行数据过滤时可以考虑使用它。比较器细节及原理请参照之前的更文:HBase Filter 过滤器之比较器 Comparator 原理及源码学习
一。Java Api
头部代码
/**
* 用于列值过滤。
*/
public class ValueFilterDemo {
private static boolean isok = false;
private static String tableName = "test";
private static String[] cfs = new String[]{"f1","f2"};
private static String[] data = new String[]{
"row-1:f1:c1:abcdefg",
"row-2:f1:c2:abc",
"row-3:f2:c3:abc123456",
"row-4:f2:c4:1234abc567"
};
public static void main(String[] args) throws IOException {
MyBase myBase = new MyBase();
Connection connection = myBase.createConnection();
if (isok) {
myBase.deleteTable(connection, tableName);
myBase.createTable(connection, tableName, cfs);
// 造数据
myBase.putRows(connection, tableName, data);
}
Table table = connection.getTable(TableName.valueOf(tableName));
Scan scan = new Scan();
中部代码
向右滑动滚动条可查看输出结果。
1. BinaryComparator 构造过滤器
ValueFilter valueFilter = new ValueFilter(CompareFilter.CompareOp.EQUAL, new BinaryComparator(Bytes.toBytes("abc"))); // [row-2:f1:c2:abc]
ValueFilter valueFilter = new ValueFilter(CompareFilter.CompareOp.NOT_EQUAL, new BinaryComparator(Bytes.toBytes("abc"))); // [row-1:f1:c1:abcdefg, row-3:f2:c3:abc123456, row-4:f2:c4:1234abc567]
ValueFilter valueFilter = new ValueFilter(CompareFilter.CompareOp.GREATER, new BinaryComparator(Bytes.toBytes("abc"))); // [row-1:f1:c1:abcdefg, row-3:f2:c3:abc123456]
ValueFilter valueFilter = new ValueFilter(CompareFilter.CompareOp.GREATER_OR_EQUAL, new BinaryComparator(Bytes.toBytes("abc1"))); // [row-1:f1:c1:abcdefg, row-3:f2:c3:abc123456]
ValueFilter valueFilter = new ValueFilter(CompareFilter.CompareOp.LESS, new BinaryComparator(Bytes.toBytes("abc"))); // [row-4:f2:c4:1234abc567]
ValueFilter valueFilter = new ValueFilter(CompareFilter.CompareOp.LESS_OR_EQUAL, new BinaryComparator(Bytes.toBytes("abc"))); // [row-2:f1:c2:abc, row-4:f2:c4:1234abc567]
2. BinaryPrefixComparator 构造过滤器
ValueFilter valueFilter = new ValueFilter(CompareFilter.CompareOp.EQUAL, new BinaryPrefixComparator(Bytes.toBytes("123"))); // [row-4:f2:c4:1234abc567]
ValueFilter valueFilter = new ValueFilter(CompareFilter.CompareOp.NOT_EQUAL, new BinaryPrefixComparator(Bytes.toBytes("ab"))); // [row-4:f2:c4:1234abc567]
ValueFilter valueFilter = new ValueFilter(CompareFilter.CompareOp.GREATER, new BinaryPrefixComparator(Bytes.toBytes("ab"))); // [] 只比较prefix长度的字节
ValueFilter valueFilter = new ValueFilter(CompareFilter.CompareOp.GREATER_OR_EQUAL, new BinaryPrefixComparator(Bytes.toBytes("ab"))); // [row-1:f1:c1:abcdefg, row-2:f1:c2:abc, row-3:f2:c3:abc123456]
ValueFilter valueFilter = new ValueFilter(CompareFilter.CompareOp.LESS, new BinaryPrefixComparator(Bytes.toBytes("abc"))); // [row-4:f2:c4:1234abc567]
ValueFilter valueFilter = new ValueFilter(CompareFilter.CompareOp.LESS_OR_EQUAL, new BinaryPrefixComparator(Bytes.toBytes("abc"))); // [row-1:f1:c1:abcdefg, row-2:f1:c2:abc, row-3:f2:c3:abc123456, row-4:f2:c4:1234abc567]
3. SubstringComparator 构造过滤器
ValueFilter valueFilter = new ValueFilter(CompareFilter.CompareOp.EQUAL, new SubstringComparator("123")); // [row-3:f2:c3:abc123456, row-4:f2:c4:1234abc567]
ValueFilter valueFilter = new ValueFilter(CompareFilter.CompareOp.NOT_EQUAL, new SubstringComparator("def")); // [row-2:f1:c2:abc, row-3:f2:c3:abc123456, row-4:f2:c4:1234abc567]```
4. RegexStringComparator 构造过滤器
ValueFilter valueFilter = new ValueFilter(CompareFilter.CompareOp.NOT_EQUAL, new RegexStringComparator("4[a-z]")); // [row-1:f1:c1:abcdefg, row-2:f1:c2:abc, row-3:f2:c3:abc123456]
ValueFilter valueFilter = new ValueFilter(CompareFilter.CompareOp.EQUAL, new RegexStringComparator("4[a-z]")); // [row-4:f2:c4:1234abc567]
ValueFilter valueFilter = new ValueFilter(CompareFilter.CompareOp.EQUAL, new RegexStringComparator("abc")); // [row-1:f1:c1:abcdefg, row-2:f1:c2:abc, row-3:f2:c3:abc123456, row-4:f2:c4:1234abc567]
尾部代码
scan.setFilter(valueFilter);
ResultScanner scanner = table.getScanner(scan);
Iterator<Result> iterator = scanner.iterator();
LinkedList<String> keys = new LinkedList<>();
while (iterator.hasNext()) {
String key = "";
Result result = iterator.next();
for (Cell cell : result.rawCells()) {
byte[] rowkey = CellUtil.cloneRow(cell);
byte[] family = CellUtil.cloneFamily(cell);
byte[] column = CellUtil.cloneQualifier(cell);
byte[] value = CellUtil.cloneValue(cell);
key = Bytes.toString(rowkey) + ":" + Bytes.toString(family) + ":" + Bytes.toString(column) + ":" + Bytes.toString(value);
keys.add(key);
}
}
System.out.println(keys);
scanner.close();
table.close();
connection.close();
}
}
二。Shell Api
1. BinaryComparator 构造过滤器
方式一:
hbase(main):006:0> scan 'test',{FILTER=>"ValueFilter(=,'binary:abc')"}
ROW COLUMN+CELL
row-2 column=f1:c2, timestamp=1589453592471, value=abc
1 row(s) in 0.0240 seconds
支持的比较运算符:= != > >= < <=
,不再一一举例。
方式二:
import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.BinaryComparator
import org.apache.hadoop.hbase.filter.ValueFilter
hbase(main):010:0> scan 'test',{FILTER => ValueFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), BinaryComparator.new(Bytes.toBytes('abc')))}
ROW COLUMN+CELL
row-2 column=f1:c2, timestamp=1589453592471, value=abc
1 row(s) in 0.0230 seconds
支持的比较运算符:LESS
、LESS_OR_EQUAL
、EQUAL
、NOT_EQUAL
、GREATER
、GREATER_OR_EQUAL
,不再一一举例。
推荐使用方式一,更简洁方便。
2. BinaryPrefixComparator 构造过滤器
方式一:
hbase(main):011:0> scan 'test',{FILTER=>"ValueFilter(=,'binaryprefix:ab')"}
ROW COLUMN+CELL
row-1 column=f1:c1, timestamp=1589453592471, value=abcdefg
row-2 column=f1:c2, timestamp=1589453592471, value=abc
row-3 column=f2:c3, timestamp=1589453592471, value=abc123456
3 row(s) in 0.0430 seconds
方式二:
import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.BinaryPrefixComparator
import org.apache.hadoop.hbase.filter.ValueFilter
hbase(main):013:0> scan 'test',{FILTER => ValueFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), BinaryPrefixComparator.new(Bytes.toBytes('ab')))}
ROW COLUMN+CELL
row-1 column=f1:c1, timestamp=1589453592471, value=abcdefg
row-2 column=f1:c2, timestamp=1589453592471, value=abc
row-3 column=f2:c3, timestamp=1589453592471, value=abc123456
3 row(s) in 0.0440 seconds
其它同上。
3. SubstringComparator 构造过滤器
方式一:
hbase(main):014:0> scan 'test',{FILTER=>"ValueFilter(=,'substring:123')"}
ROW COLUMN+CELL
row-3 column=f2:c3, timestamp=1589453592471, value=abc123456
row-4 column=f2:c4, timestamp=1589453592471, value=1234abc567
2 row(s) in 0.0340 seconds
方式二:
import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
import org.apache.hadoop.hbase.filter.ValueFilter
hbase(main):016:0> scan 'test',{FILTER => ValueFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), SubstringComparator.new('123'))}
ROW COLUMN+CELL
row-3 column=f2:c3, timestamp=1589453592471, value=abc123456
row-4 column=f2:c4, timestamp=1589453592471, value=1234abc567
2 row(s) in 0.0240 seconds
区别于上的是这里直接传入字符串进行比较,且只支持EQUAL
和NOT_EQUAL
两种比较符。
4. RegexStringComparator 构造过滤器
import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.RegexStringComparator
import org.apache.hadoop.hbase.filter.ValueFilter
hbase(main):018:0> scan 'test',{FILTER => ValueFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), RegexStringComparator.new('4[a-z]'))}
ROW COLUMN+CELL
row-4 column=f2:c4, timestamp=1589453592471, value=1234abc567
1 row(s) in 0.0290 seconds
该比较器直接传入字符串进行比较,且只支持EQUAL
和NOT_EQUAL
两种比较符。若想使用第一种方式可以传入regexstring
试一下,我的版本有点低暂时不支持,不再演示了。
注意这里的正则匹配指包含关系,对应底层find()
方法。
ValueFilter
不支持使用 LongComparator
比较器,且 BitComparator
、NullComparator
比较器用之甚少,也不再介绍。
查看文章全部源代码请访以下GitHub地址:
https://github.com/zhoupengbo/demos-bigdata/blob/master/hbase/hbase-filters-demos/src/main/java/com/zpb/demos/ValueFilterDemo.java
转载请注明出处!欢迎关注本人微信公众号【HBase工作笔记】
HBase Filter 过滤器之 ValueFilter 详解的更多相关文章
- HBase Filter 过滤器之RowFilter详解
前言:本文详细介绍了HBase RowFilter过滤器Java&Shell API的使用,并贴出了相关示例代码以供参考.RowFilter 基于行键进行过滤,在工作中涉及到需要通过HBase ...
- HBase Filter 过滤器之FamilyFilter详解
前言:本文详细介绍了 HBase FamilyFilter 过滤器 Java&Shell API 的使用,并贴出了相关示例代码以供参考.FamilyFilter 基于列族进行过滤,在工作中涉及 ...
- HBase Filter 过滤器之QualifierFilter详解
前言:本文详细介绍了 HBase QualifierFilter 过滤器 Java&Shell API 的使用,并贴出了相关示例代码以供参考.QualifierFilter 基于列名进行过滤, ...
- HBase Filter 过滤器之 Comparator 原理及源码学习
前言:上篇文章HBase Filter 过滤器概述对HBase过滤器的组成及其家谱进行简单介绍,本篇文章主要对HBase过滤器之比较器作一个补充介绍,也算是HBase Filter学习的必备低阶魂技吧 ...
- Java 容器之Hashset 详解
Java 容器之Hashset 详解.http://blog.csdn.net/nvd11/article/details/27716511
- Android为TV端助力 转载:Android绘图Canvas十八般武器之Shader详解及实战篇(上)
前言 Android中绘图离不开的就是Canvas了,Canvas是一个庞大的知识体系,有Java层的,也有jni层深入到Framework.Canvas有许多的知识内容,构建了一个武器库一般,所谓十 ...
- Android为TV端助力 转载:Android绘图Canvas十八般武器之Shader详解及实战篇(下)
LinearGradient 线性渐变渲染器 LinearGradient中文翻译过来就是线性渐变的意思.线性渐变通俗来讲就是给起点设置一个颜色值如#faf84d,终点设置一个颜色值如#CC423C, ...
- hbase实践之数据读取详解
hbase基本存储组织结构与数据读取组织结构对比 Segment是Hbase2.0的概念,MemStore由一个可写的Segment,以及一个或多个不可写的Segments构成.故hbase 1.*版 ...
- 网页元素定位神器之Xpath详解
摘要: 经常在工作中会使用到XPath的相关知识,但每次总会在一些关键的地方不记得或不太清楚,所以免不了每次总要查一些零碎的知识,感觉即很烦又浪费时间,所以对XPath归纳及总结一下. ... ...
随机推荐
- C#线程学习笔记
本笔记摘抄自:https://www.cnblogs.com/zhili/archive/2012/07/18/Thread.html,记录一下学习,方便后面资料查找 一.线程的介绍 进程(Proce ...
- 5. 配置项:rule_files
prometheus配置文件内容: global: # 默认情况下抓取目标的频率. [ scrape_interval: <duration> | default = 1m ] # 抓取超 ...
- 使用 GoLand 启动 运行 Go 项目
来源:https://my.oschina.net/u/3744526/blog/3085468 在使用本博客经验之前 需配置好 GOPATH 跟 GOROOT 创建好本地工作路径之后,使用 GoLa ...
- 2019-2020-1 20199310《Linux内核原理与分析》第五周作业
1.问题描述 在前面的文章中,已经了解了Linux内核源代码的目录结构,并在Oracle VM VirtualBox的Linux环境中构造一个简单的操作系统MenuOS,本文将学习系统调用的相关理论知 ...
- 一千行mysql笔记
原文地址:https://shockerli.net/post/1000-line-mysql-note/ /* Windows服务 */ -- 启动MySQL net start mysql -- ...
- HTML5 Canvas指纹及反追踪介绍
1 Canvas指纹的简介很多网站通过Canvas指纹来跟踪用户.browserleaks[1]是一个在线检测canvas指纹的网站.一般的指纹实现原理即通过canvas画布绘制一些图形,填写一些文字 ...
- 2019 ICPC 银川网络赛 D. Take Your Seat (疯子坐飞机问题)
Duha decided to have a trip to Singapore by plane. The airplane had nn seats numbered from 11 to nn, ...
- 3) drf 框架生命周期 请求模块 渲染模块 解析模块 自定义异常模块 响应模块(以及二次封装)
一.DRF框架 1.安装 pip3 install djangorestframework 2.drf框架规矩的封装风格 按功能封装,drf下按不同功能不同文件,使用不同功能导入不同文件 from r ...
- python——remove,del,pop三种删除元素方式的区别
记性不好,整理出来以作保存 1.remove ①直接删除元素,remove(obj),顺序删除第一个遇到的,所以想要全部删除 ,需要遍历 aList = [123, 'xyz', 'zara', 'a ...
- requests抓取数据示例
1:获取豆瓣电影名称及评分 # 抓取豆瓣电影名称及评分 url="https://movie.douban.com/j/search_subjects" start=input(& ...