转载

两圆相交分如下集中情况:相离、相切、相交、包含。

设两圆圆心分别是O1和O2,半径分别是r1和r2,设d为两圆心距离。又因为两圆有大有小,我们设较小的圆是O1。

相离相切的面积为零,代码如下:

  1. double d = sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
  2. if (d >= r1+r2)
  3. return 0;
double d = sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
if (d >= r1+r2)
return 0;

包含的面积就是小圆的面积了,代码如下:

  1. if(r2 - r1 >= d)
  2. return pi*r1*r1;
if(r2 - r1 >= d)
return pi*r1*r1;

接下来看看相交的情况。

相交面积可以这样算:扇形O1AB - △O1AB + 扇形O2AB - △O2AB,这两个三角形组成了一个四边形,可以用两倍的△O1AO2求得,

所以答案就是两个扇形-两倍的△O1AO2

因为

所以

那么

同理

接下来是四边形面积:

代码如下:

double ang1=acos((r1*r1+d*d-r2*r2)/(*r1*d));
double ang2=acos((r2*r2+d*d-r1*r1)/(*r2*d));
return ang1*r1*r1 + ang2*r2*r2 - r1*d*sin(ang1);
#include<iostream>
#include<cmath>
using namespace std; #define pi acos(-1.0) typedef struct node
{
int x;
int y;
}point; double AREA(point a, double r1, point b, double r2)
{
double d = sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
if (d >= r1+r2)
return ;
if (r1>r2)
{
double tmp = r1;
r1 = r2;
r2 = tmp;
}
if(r2 - r1 >= d)
return pi*r1*r1;
double ang1=acos((r1*r1+d*d-r2*r2)/(*r1*d));
double ang2=acos((r2*r2+d*d-r1*r1)/(*r2*d));
return ang1*r1*r1 + ang2*r2*r2 - r1*d*sin(ang1);
} int main()
{
point a, b;
a.x=, a.y=;
b.x=, b.y=;
double result = AREA(a, , b, );
printf("%lf\n", result);
return ;
}

Intersection

Time Limit: 4000/4000 MS (Java/Others)    Memory Limit: 512000/512000 K (Java/Others)
Total Submission(s): 3443    Accepted Submission(s): 1302

Problem Description
Matt is a big fan of logo design. Recently he falls in love with logo made up by rings. The following figures are some famous examples you may know.


A ring is a 2-D figure bounded by two circles sharing the common center. The radius for these circles are denoted by r and R (r < R). For more details, refer to the gray part in the illustration below.


Matt just designed a new logo consisting of two rings with the same size in the 2-D plane. For his interests, Matt would like to know the area of the intersection of these two rings.

 
Input
The first line contains only one integer T (T ≤ 105), which indicates the number of test cases. For each test case, the first line contains two integers r, R (0 ≤ r < R ≤ 10).

Each of the following two lines contains two integers xi, yi (0 ≤ xi, yi ≤ 20) indicating the coordinates of the center of each ring.

 
Output
For each test case, output a single line “Case #x: y”, where x is the case number (starting from 1) and y is the area of intersection rounded to 6 decimal places.
 
Sample Input
2
2 3
0 0
0 0
2 3
0 0
5 0
 
Sample Output
Case #1: 15.707963
Case #2: 2.250778

#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
double x1,ya,x2,y2,dis,s1,s2,s3,R,r;
double sov(double R,double r){
if(dis>=r+R) return ;
if(dis<=R-r) return acos(-1.0)*r*r;
double x=(R*R-r*r+dis*dis)/2.0/dis;
double y=(r*r-R*R+dis*dis)/2.0/dis;
double seta1=*acos(x/R);
double seta2=*acos(y/r);
double ans=seta1*R*R/2.0+seta2*r*r/2.0;
double h=sqrt(R*R-x*x);
return ans-dis*h;
}
int main(){
int tas=,T;
for(scanf("%d",&T);T--;){
scanf("%lf%lf",&r,&R);
scanf("%lf%lf%lf%lf",&x1,&ya,&x2,&y2);
dis=sqrt((x1-x2)*(x1-x2)+(ya-y2)*(ya-y2));
s1=sov(R,R),s2=sov(R,r),s3=sov(r,r);
printf("Case #%d: %.6f\n",tas++,s1-*s2+s3);
}
}

两圆相交求面积 hdu5120的更多相关文章

  1. POJ 2546 &amp; ZOJ 1597 Circular Area(求两圆相交的面积 模板)

    题目链接: POJ:http://poj.org/problem? id=2546 ZOJ:problemId=597" target="_blank">http: ...

  2. hdu 5120 (求两圆相交的面积

    题意:告诉你两个圆环,求圆环相交的面积. /* gyt Live up to every day */ #include<cstdio> #include<cmath> #in ...

  3. 求两圆相交部分面积(C++)

    已知两圆圆心坐标和半径,求相交部分面积: #include <iostream> using namespace std; #include<cmath> #include&l ...

  4. POJ 2546 Circular Area(两个圆相交的面积)

    题目链接 题意 : 给你两个圆的半径和圆心,让你求两个圆相交的面积大小. 思路 : 分三种情况讨论 假设半径小的圆为c1,半径大的圆为c2. c1的半径r1,圆心坐标(x1,y1).c2的半径r2,圆 ...

  5. poj2546Circular Area(两圆相交面积)

    链接 画图推公式 这两种情况 都可用一种公式算出来 就是两圆都求出圆心角 求出扇形的面积减掉三角形面积 #include <iostream> using namespace std; # ...

  6. hdu5858 Hard problem(求两圆相交面积)

    题目传送门 Hard problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  7. LightOJ 1118--Incredible Molecules(两圆相交)

    1118 - Incredible Molecules      PDF (English) Statistics Forum Time Limit: 0.5 second(s) Memory Lim ...

  8. 西南民大oj(两园交求面积)

    西南民大oj:http://www.swunacm.com/acmhome/welcome.do?method=index 我的几何不可能那么可爱 时间限制(普通/Java) : 1000 MS/ 3 ...

  9. 牛客网暑期ACM多校训练营(第三场)J 多边形与圆相交的面积

    链接:https://www.nowcoder.com/acm/contest/141/J 题目描述 Eddy has graduated from college. Currently, he is ...

随机推荐

  1. Android:finish()与System.exit(0)之间的区别

    finish()与System.exit(0)都是用来退出.但是两者还是有一定的区别: finish是Activity的类,仅仅针对Activity,当调用finish()时,只是将活动推向后台,并没 ...

  2. .net多线程归并排序

    一.概述 在了解排序算法的同时,想到用多线程排序减少排序的时间,所以写了一个简单的示例,加深印象.下面是具体代码 二.内容 环境:vs2017,.net  core 2.2 控制台程序. 运行时使用r ...

  3. 前线观察 | AWS re:Invent 2018见闻实录

    作为云计算行业科技盛会,AWS:reInvent大会近年来越来越受关注,其中尤其被关注的分别是CEO Andy Jassy和CTO Werner Vogels的Keynote演讲.2018年11月28 ...

  4. MySQL用另一张表的字段值Update本表

    SQL示例: UPDATE TABLE1 a, TABLE2 b SET a.field1 = b. field1 [, a.field2 = b.field2, ...] WHERE a.connn ...

  5. centos6更换yum源和epel源

    epel是yum的一个软件用源,包含了很多基本源中没有的软件,cobbler就属于基本源中没有的软件,所以需要安装epel源. yum源: wget -O /etc/yum.repos.d/CentO ...

  6. 一个简单的wed服务器SHTTPD(3)————SHTTPD多客户端支持的实现

    //start from the very beginning,and to create greatness //@author: Chuangwei Lin //@E-mail:979951191 ...

  7. Pika源码学习--pika的通信和线程模型

    pika的线程模型有官方的wiki介绍https://github.com/Qihoo360/pika/wiki/pika-%E7%BA%BF%E7%A8%8B%E6%A8%A1%E5%9E%8B,这 ...

  8. 如何对Code Review的评论进行分级

    我曾写过一篇关于Code Review的文章<Code Review 最佳实践>,在文章中建议对Code Review的评论进行分级: 建议可以对Review的评论进行分级,不同级别的结果 ...

  9. 整理高度塌陷与BFC

    当面试官问道你高度塌陷时,人们第一想到的方法一定是 .clearfix::after { content: ''; display: block; clear: both; visibility: h ...

  10. Programming Languages_05 FWAE

    FWAE : Concrete syntax <FWAE> ::= <num> | {+ <FWAE> <FWAE>} | {- <FWAE> ...