P3349 [ZJOI2016]小星星

声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。

题目描述

小 \(Y\) 是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品。她有 \(n\) 颗小星星,用 \(m\) 条彩色的细线串了起来,每条细线连着两颗小星星。

有一天她发现,她的饰品被破坏了,很多细线都被拆掉了。这个饰品只剩下了 \(n-1\) 条细线,但通过这些细线,这颗小星星还是被串在一起,也就是这些小星星通过这些细线形成了树。小 \(Y\) 找到了这个饰品的设计图纸,她想知道现在饰品中的小星星对应着原来图纸上的哪些小星星。如果现在饰品中两颗小星星有细线相连,那么要求对应的小星星原来的图纸上也有细线相连。小 \(Y\) 想知道有多少种可能的对应方式。

只有你告诉了她正确的答案,她才会把小饰品做为礼物送给你呢。

输入格式

第一行包含个 \(2\) 正整数 \(n,m\),表示原来的饰品中小星星的个数和细线的条数。接下来 \(m\) 行,每行包含 \(2\) 个正整数 \(u,v\),表示原来的饰品中小星星 \(u\) 和 \(v\) 通过细线连了起来。这里的小星星从 \(1\) 开始标号。保证 \(u≠v\),且每对小星星之间最多只有一条细线相连。接下来 \(n-1\) 行,每行包含个 \(2\) 正整数 \(u,v\),表示现在的饰品中小星星 \(u\) 和 \(v\) 通过细线连了起来。保证这些小星星通过细线可以串在一起。\(n<=17,m<=n*(n-1)/2\)

输出格式

输出共 \(1\) 行,包含一个整数表示可能的对应方式的数量。如果不存在可行的对应方式则输出 \(0\)。


\(Solution\)

从一个暴力开始考虑,设 \(f[i][j][S]\) 表示,以 \(i\) 为树根的子树,当 \(i\) 映射到 \(j\) 上,映射的子集为 \(S\) 时的方案数。

不断合并 \(i\) 的子树来转移,复杂度貌似是 \(O(3^n n)\) 的,但是不知道为什么 \(emm\)

考虑如何优化

如果我们去除 \(S\) 这一维,那么答案中会有一些不合法的情况,但这些不合法的情况仅为多个点映射到同一个点,不会出现两个点之间没有边相连的情况

于是我们可以做容斥,去除掉这些不合法情况

首先枚举删除一个点,在剩下的图上做一遍 \(f[i][j]\) 的 \(dp\),此时找到的状态至少有两个点映射在了同一个点上(因为图上只有 \(n - 1\) 个点,而树上有 \(n\) 个)

我们把这些状态都删除,但是会发现,会重复删除掉三个点,四个点等映射在同一个点上的情况,于是再加上它们

然后就可以做容斥了


\(Code\)

代码其实挺简单的,但是要注意在做 \(dp\) 的时候,把儿子循环放外面,先做儿子的 \(dp\) 再枚举 \(j\),不然会超时(不过这个逻辑应该挺简单,我真是降智了)

#include<bits/stdc++.h>
#define ll long long
#define F(i, x, y) for(int i = x; i <= y; ++i)
using namespace std;
int read();
const int N = 400;
int n, m;
int mp[N][N];
int head[N], cnt, ver[N], next[N];
ll ban[N], f[N][N];
ll ans;
void add(int x, int y)
{
ver[++ cnt] = y, next[cnt] = head[x], head[x] = cnt;
}
void dfs(int x, int fa)
{
F(j, 1, n) f[x][j] = 1;
for(int i = head[x]; i; i = next[i])
if(ver[i] != fa)
{
dfs(ver[i], x);
F(j, 1, n)
if(! ban[j])
{
ll res = 0;
F(v, 1, n) if(! ban[v]) res += f[ver[i]][v] * mp[v][j];
f[x][j] *= res;
}
}
}
int main()
{
n = read(), m = read();
for(int i = 1, u, v; i <= m; ++ i) u = read(), v = read(), mp[u][v] = mp[v][u] = 1;
for(int i = 1, u, v; i <= n - 1; ++ i) u = read(), v = read(), add(u, v), add(v, u);
F(k, 0, (1 << n) - 1) // 可以直接枚举状态,不用按顺序,这样简单很多
{
F(i, 1, n) ban[i] = 0;
F(i, 1, n) F(j, 1, n) f[i][j] = 0;
int size = 0; ll res = 0;
for(int i = 1, s = k; s; ++ i, s >>= 1) if(s & 1) ban[i] = 1, ++ size;
dfs(1, 0);
F(i, 1, n) res += f[1][i];
if(size & 1) ans -= res;
else ans += res;
}
printf("%lld\n", ans);
return 0;
}
int read()
{
int x = 0, f = 1;
char c = getchar();
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}

【题解】P3349 [ZJOI2016]小星星 - 子集dp - 容斥的更多相关文章

  1. bzoj 4455 [Zjoi2016]小星星 树形dp&容斥

    4455: [Zjoi2016]小星星 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 643  Solved: 391[Submit][Status] ...

  2. uoj185 [ZJOI2016]小星星 【dp + 容斥】

    题目链接 uoj185 题解 设\(f[i][j]\)表示\(i\)为根的子树,\(i\)号点对应图上\(j\)号点时的方案数 显然这样\(dp\)会使一些节点使用同一个节点,此时总的节点数就不满\( ...

  3. 洛谷 P3349 [ZJOI2016]小星星 解题报告

    P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...

  4. bzoj 3622 DP + 容斥

    LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...

  5. 【BZOJ 4665】 4665: 小w的喜糖 (DP+容斥)

    4665: 小w的喜糖 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 94  Solved: 53 Description 废话不多说,反正小w要发喜 ...

  6. [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥

    题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...

  7. P3160 [CQOI2012]局部极小值 题解(状压DP+容斥)

    题目链接 P3160 [CQOI2012]局部极小值 双倍经验,双倍快乐 解题思路 存下来每个坑(极小值点)的位置,以这个序号进行状态压缩. 显然,\(4*7\)的数据范围让极小值点在8个以内(以下示 ...

  8. [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】

    题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...

  9. BZOJ.2655.calc(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...

随机推荐

  1. 在django中如何从零开始搭建一个mock服务

    mock概念 mock 就是模拟接口返回的一系列数据,用自定义的数据替换接口实际需要返回的数据,通过自定义的数据来实现对下级接口模块的测试.这里分为两类测试:一类是前端对接口的mock,一类是后端单元 ...

  2. OpenCV-Python 图像金字塔 | 二十

    目标 在本章中, 我们将学习图像金字塔 我们将使用图像金字塔创建一个新的水果"Orapple" 我们将看到以下功能:cv.pyrUp(),cv.pyrDown() 理论 通常,我们 ...

  3. 十分钟一起学会Inception网络

    作者 | 荔枝boy 编辑 | 安可 一.Inception网络简介 二.Inception网络模块 三.Inception网络降低参数计算量 四.Inception网络减缓梯度消失现象 五.Ince ...

  4. Leetcode_239. 滑动窗口最大值

    单调队列模板题,扫描一遍,队尾维护单调性,队头维护不超过大小为k的区间. code class Solution { public: vector<int> maxSlidingWindo ...

  5. 数据分析_numpy_基础1

    数据分析_numpy_基础1 创建数组 方法 说明 np.array( x ) 将输入数据转化为一个ndarray| np.array( x, dtype ) 将输入数据转化为一个类型为type的nd ...

  6. ShardingJDBC的基本配置和使用

    一.ShardingSphere介绍 ShardingSphere是一套开源的分布式数据库中间件解决方案组成的生态圈,它由Sharding-JDBC.Sharding-Proxy和Sharding-S ...

  7. JVM中垃圾回收机制如何判断是否死亡?详解引用计数法和可达性分析 !

    因为热爱,所以坚持. 文章下方有本文参考电子书和视频的下载地址哦~ 这节我们主要讲垃圾收集的一些基本概念,先了解垃圾收集是什么.然后触发条件是什么.最后虚拟机如何判断对象是否死亡. 一.前言   我们 ...

  8. dp例题02. 滑雪问题 (poj1088)

    poj1088滑雪问题 题目链接:http://poj.org/status Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得 ...

  9. python之xlrd和xlwt模块读写excel使用详解

    一.xlrd模块和xlwt模块是什么      xlrd模块是python第三方工具包,用于读取excel中的数据:      xlwt模块是python第三方工具包,用于往excel中写入数据: 二 ...

  10. Android ConstraintLayout 构建自适应界面

    原文链接 使用 ConstraintLayout 构建自适应界面 ConstraintLayout 可让您使用扁平视图层次结构(无嵌套视图组)创建复杂的大型布局.它与 RelativeLayout 相 ...