自动求导机制是每一个深度学习框架中重要的性质,免去了手动计算导数,下面用代码介绍并举例说明Pytorch的自动求导机制。

  首先介绍Variable,Variable是对Tensor的一个封装,操作和Tensor是一样的,但是每个Variable都有三个属性:Varibale的Tensor本身的.data,对应Tensor的梯度.grad,以及这个Variable是通过什么方式得到的.grad_fn,根据最新消息,在pytorch0.4更新后,torch和torch.autograd.Variable现在是同一类。torch.Tensor能像Variable那样追踪历史和反向传播。Variable仍能正确工作,但是返回的是Tensor。

  我们拥抱这些新特性,看看Pytorch怎么进行自动求梯度。

 #encoding:utf-8
import torch x = torch.tensor([2.],requires_grad=True) #新建一个tensor,允许自动求梯度,这一项默认是false.
y = (x+2)**2 + 3 #y的表达式中包含x,因此y能进行自动求梯度
y.backward()
print(x.grad)

  输出结果是:

tensor([8.])

  这里添加一个小知识点,即torch.Tensor和torch.tensor的不同。二者均可以生成新的张量,但torch.Tensor()是python类,是默认张量类型torch.FloatTensor()的别名,使用torch.Tensor()会调用构造函数,生成单精度浮点类型的张量。

  而torch.tensor()是函数,其中data可以是list,tuple,numpy,ndarray,scalar和其他类型,但只有浮点类型的张量能够自动求梯度。

torch.tensor(data, dtype=None, device=None, requires_grad=False)

  言归正传,上一个例子的变量本质上是标量。下面一个例子对矩阵求导。

 #encoding:utf-8
import torch x = torch.ones((2,4),requires_grad=True)
y = torch.ones((2,1),requires_grad=True)
W = torch.ones((4,1),requires_grad=True) J = torch.sum(y - torch.matmul(x,W)) #torch.matmul()表示对矩阵作乘法
J.backward()
print(x.grad)
print(y.grad)
print(W.grad)

  输出结果是:

tensor([[-1., -1., -1., -1.],
[-1., -1., -1., -1.]])
tensor([[1.],
[1.]])
tensor([[-2.],
[-2.],
[-2.],
[-2.]])  

Pytorch中的自动求梯度机制和Variable类的更多相关文章

  1. Pytorch中的自动求导函数backward()所需参数含义

    摘要:一个神经网络有N个样本,经过这个网络把N个样本分为M类,那么此时backward参数的维度应该是[N X M] 正常来说backward()函数是要传入参数的,一直没弄明白backward需要传 ...

  2. Pytorch Autograd (自动求导机制)

    Pytorch Autograd (自动求导机制) Introduce Pytorch Autograd库 (自动求导机制) 是训练神经网络时,反向误差传播(BP)算法的核心. 本文通过logisti ...

  3. PyTorch官方中文文档:自动求导机制

    自动求导机制 本说明将概述Autograd如何工作并记录操作.了解这些并不是绝对必要的,但我们建议您熟悉它,因为它将帮助您编写更高效,更简洁的程序,并可帮助您进行调试. 从后向中排除子图 每个变量都有 ...

  4. Pytorch学习(一)—— 自动求导机制

    现在对 CNN 有了一定的了解,同时在 GitHub 上找了几个 examples 来学习,对网络的搭建有了笼统地认识,但是发现有好多基础 pytorch 的知识需要补习,所以慢慢从官网 API进行学 ...

  5. PyTorch入门学习(二):Autogard之自动求梯度

    autograd包是PyTorch中神经网络的核心部分,简单学习一下. autograd提供了所有张量操作的自动求微分功能. 它的灵活性体现在可以通过代码的运行来决定反向传播的过程, 这样就使得每一次 ...

  6. pytorch 自动求梯度

    自动求梯度 在深度学习中,我们经常需要对函数求梯度(gradient).PyTorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播.本节将介绍如何使用autogra ...

  7. pytorch的自动求导机制 - 计算图的建立

    一.计算图简介 在pytorch的官网上,可以看到一个简单的计算图示意图, 如下. import torchfrom torch.autograd import Variable x = Variab ...

  8. 从头学pytorch(二) 自动求梯度

    PyTorch提供的autograd包能够根据输⼊和前向传播过程⾃动构建计算图,并执⾏反向传播. Tensor Tensor的几个重要属性或方法 .requires_grad 设为true的话,ten ...

  9. 什么是pytorch(2Autograd:自动求导)(翻译)

    Autograd: 自动求导 pyTorch里神经网络能够训练就是靠autograd包.我们来看下这个包,然后我们使用它来训练我们的第一个神经网络. autograd 包提供了对张量的所有运算自动求导 ...

随机推荐

  1. EF用导航熟悉遍历从表时,删除主表出错

    var entitys= Repository.Table.Where(a => ids.Contains(a.UUID)).ToList(); entitys.ForEach(a => ...

  2. C# 数据操作系列 - 18 让Dapper更强的插件

    0. 前言 在前一篇中我们讲到了Dapper的应用,但是给我们的感觉Dapper不像个ORM更像一个IDbConnection的扩展.是的,没错.在实际开发中我们经常用Dapper作为对EF Core ...

  3. [工具-008] C#邮件发送系统

    邮件发送系统很多,但是我这边给大家展示下我最近开发的一款邮件发送系统,有参照网上的一个兄弟的界面,进行了升级,界面如下. 从界面上我们可以看到了该邮件系统有如下功能: 1)服务器的设置 2)发件人的设 ...

  4. SourceTree 配置 GitLab

    生成SSH 创建SSH,执行ssh-keygen -t rsa -C "youremail@example.com",会在.ssh目录下生成id_rsa.id_rsa.pub两个私 ...

  5. 自定义值类型一定不要忘了重写Equals,否则性能和空间双双堪忧

    一:背景 1. 讲故事 曾今在项目中发现有同事自定义结构体的时候,居然没有重写Equals方法,比如下面这段代码: static void Main(string[] args) { var list ...

  6. Nessus静态ip配置及内网扫描

    环境ubuntu虚拟机,以前linux配置ip都是从/etc/network/interfaces这里面更改,现在要在/etc/netplan下面配置. vim /etc/netplan/01-net ...

  7. 万字超强图文讲解AQS以及ReentrantLock应用(建议收藏)

    | 好看请赞,养成习惯 你有一个思想,我有一个思想,我们交换后,一个人就有两个思想 If you can NOT explain it simply, you do NOT understand it ...

  8. 实现 (5).add(3).minus(2),使其输出结果为:6

    function check(n) { n = Number(n); return isNaN(n) ? 0 : n; } function add(n) { n = check(n); return ...

  9. Linux (一)概述

    认识操作系统 操作系统的作用 把计算机系统中对硬件设备的操作封装起来,供应用软件调用. ​ 2. 常见操作系统        1.2.1 PC端OS ​ 1.2.2  移动端OS ​ 1.2.3  服 ...

  10. Java 第十一届 蓝桥杯 省模拟赛 递增序列

    问题描述 在数列 a[1], a[2], -, a[n] 中,如果 a[i] < a[i+1] < a[i+2] < - < a[j],则称 a[i] 至 a[j] 为一段递增 ...