「JSOI2014」学生选课
「JSOI2014」学生选课
传送门
看到这题首先可以二分。
考虑对于当前的 \(mid\) 如何 \(\text{check}\)
我们用 \(f_{i,j}\) 来表示 \(i\) 对 \(j\) 的好感度排名,那么对于两个人 \(i\),\(j\) 如果有 \(\max\{f_{i, j}, f_{j, i}\} > mid\) 那么显然这两个人是不能上同一个老师的课的。
而且每个人可以上的课只有两种,我们记为 \(a_{i, 0 / 1}\)
假设 \(i\),\(j\) 对于当前的 \(mid\) 而言不能分在一起,其中 \(a_{i, 0} = a_{j, 0}\),那么我们可以发现:
- \(i\) 上 \(a_{i, 0}\) 的课,则必须有 \(j\) 上 \(a_{j, 1}\) 的课
- \(j\) 上 \(a_{j, 0}\) 的课,则必须有 \(i\) 上 \(a_{i, 1}\) 的课
可以发现这就是一个裸的 \(\text{2-SAT}\)
所以我们每次 \(\text{check}\) 都建图跑一遍 \(\text{2-SAT}\) 就好了。
参考代码:
#include <cstring>
#include <cstdio>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
template < class T > inline T min(T a, T b) { return a < b ? a : b; }
template < class T > inline T max(T a, T b) { return a > b ? a : b; }
template < class T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while ('0' > c || c > '9') f |= c == '-', c = getchar();
while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
s = f ? -s : s;
}
const int _ = 1010;
int tot, head[_ * 3]; struct Edge { int v, nxt; } edge[_ * _ * 4];
inline void Add_edge(int u, int v) { edge[++tot] = (Edge) { v, head[u] }, head[u] = tot; }
int n, t[_], a[_][2], f[_][_];
int num, dfn[_ * 3], low[_ * 3], col, co[_ * 3], top, stk[_ * 3];
inline void tarjan(int u) {
dfn[u] = low[u] = ++num, stk[++top] = u;
for (rg int i = head[u]; i; i = edge[i].nxt) {
int v = edge[i].v;
if (!dfn[v])
tarjan(v), low[u] = min(low[u], low[v]);
else
if (!co[v]) low[u] = min(low[u], dfn[v]);
}
if (low[u] == dfn[u]) { ++col;
do co[stk[top]] = col; while (stk[top--] != u);
}
}
inline int id(int x, int y) { return y * (n + 1) + x; }
inline void init() {
tot = num = col = top = 0;
memset(head, 0, sizeof head);
memset(dfn, 0, sizeof dfn);
memset(low, 0, sizeof low);
memset(co, 0, sizeof co);
}
inline bool check(int mid) {
init();
for (rg int i = 1; i <= n; ++i)
for (rg int j = i + 1; j <= n; ++j) {
if (f[i][j] <= mid) continue ;
if (a[i][0] == a[j][0]) {
Add_edge(id(i, a[i][0]), id(j, a[j][1]));
Add_edge(id(j, a[j][0]), id(i, a[i][1]));
}
if (a[i][0] == a[j][1]) {
Add_edge(id(i, a[i][0]), id(j, a[j][0]));
Add_edge(id(j, a[j][1]), id(i, a[i][1]));
}
if (a[i][1] == a[j][0]) {
Add_edge(id(i, a[i][1]), id(j, a[j][1]));
Add_edge(id(j, a[j][0]), id(i, a[i][0]));
}
if (a[i][1] == a[j][1]) {
Add_edge(id(i, a[i][1]), id(j, a[j][0]));
Add_edge(id(j, a[j][1]), id(i, a[i][0]));
}
}
for (rg int i = 1; i <= n; ++i)
for (rg int k = 0; k < 3; ++k)
if (t[i] != k && !dfn[id(i, k)]) tarjan(id(i, k));
for (rg int i = 1; i <= n; ++i)
if (co[id(i, a[i][0])] == co[id(i, a[i][1])]) return 0;
return 1;
}
int main() {
#ifndef ONLINE_JUDGE
file("cpp");
#endif
read(n);
for (rg int i = 1; i <= n; ++i) {
read(t[i]);
if (t[i] == 0) a[i][0] = 1, a[i][1] = 2;
if (t[i] == 1) a[i][0] = 0, a[i][1] = 2;
if (t[i] == 2) a[i][0] = 0, a[i][1] = 1;
for (rg int x, j = 1; j < n; ++j) read(x), f[i][x] = j;
}
for (rg int i = 1; i <= n; ++i)
for (rg int j = i + 1; j <= n; ++j) f[i][j] = max(f[i][j], f[j][i]);
int l = 1, r = n - 1;
while (l < r) {
int mid = (l + r) >> 1;
if (check(mid)) r = mid; else l = mid + 1;
}
printf("%d\n", l);
return 0;
}
「JSOI2014」学生选课的更多相关文章
- 「JSOI2014」矩形并
「JSOI2014」矩形并 传送门 我们首先考虑怎么算这个期望比较好. 我们不难发现每一个矩形要和 \(n - 1\) 个矩形去交,而总共又有 \(n\) 个矩形,所以我们把矩形两两之间的交全部加起来 ...
- 「JSOI2014」打兔子
「JSOI2014」打兔子 传送门 首先要特判 \(k \ge \lceil \frac{n}{2} \rceil\) 的情况,因为此时显然可以消灭所有的兔子,也就是再环上隔一个点打一枪. 但是我们又 ...
- 「JSOI2014」电信网络
「JSOI2014」电信网络 传送门 一个点选了就必须选若干个点,最大化点权之和,显然最大权闭合子图问题. 一个点向它范围内所有点连边,直接跑最大权闭合子图即可. 参考代码: #include < ...
- 「JSOI2014」歌剧表演
「JSOI2014」歌剧表演 传送门 没想到吧我半夜切的 这道题应该算是 \(\text{JSOI2014}\) 里面比较简单的吧... 考虑用集合关系来表示分辨关系,具体地说就是我们把所有演员分成若 ...
- 「JSOI2014」支线剧情2
「JSOI2014」支线剧情2 传送门 不难发现原图是一个以 \(1\) 为根的有根树,所以我们考虑树形 \(\text{DP}\). 设 \(f_i\) 表示暴力地走完以 \(i\) 为根的子树的最 ...
- 「JSOI2014」强连通图
「JSOI2014」强连通图 传送门 第一问很显然就是最大的强连通分量的大小. 对于第二问,我们先把原图进行缩点,得到 \(\text{DAG}\) 后,统计出入度为零的点的个数和出度为零的点的个数, ...
- 「JSOI2014」序列维护
「JSOI2014」序列维护 传送门 其实这题就是luogu的模板线段树2,之所以要发题解就是因为学到了一种比较NB的 \(\text{update}\) 的方式.(参见这题) 我们可以把修改操作统一 ...
- 「AHOI2014/JSOI2014」宅男计划
「AHOI2014/JSOI2014」宅男计划 传送门 我们首先要发现一个性质:存货天数随买食物的次数的变化类似于单峰函数. 具体证明不会啊,好像是二分加三分来证明?但是没有找到明确的严格证明. 感性 ...
- 「AHOI2014/JSOI2014」拼图
「AHOI2014/JSOI2014」拼图 传送门 看到 \(n \times m \le 10^5\) ,考虑根号分治. 对于 \(n < m\) 的情况,我们可以枚举最终矩形的上下边界 \( ...
随机推荐
- 如何将mongo查询结果导出到文件中
1.新建一个js文件,将查询方法写进去,如dump.js,文件内容如下 var c = db.campaign.find({status:1}).limit(5) while(c.hasNext()) ...
- win7搭建python环境--同时安装版本2和版本3
软件准备[以win7 64位系统为例] python2.x版本建议使用2.7.9或更新版本,因为该版本开始集成了setuptools和pip,这样省去了不少功夫 python2.7.9下载地址: ht ...
- [LeetCode]1.Two Sum 两数之和&&第一次刷题感想
---恢复内容开始--- 参考博客: https://www.cnblogs.com/grandyang/p/4130379.html https://blog.csdn.net/weixin_387 ...
- mtrace 简介
内存泄露问题一般会再长时间运行的程序中暴露出来.而且一般很难定位和查找. linux 提供mtrace/muntrace来检测程序是否有内存泄露.一般来说要检测哪一段代码是否有内存泄露,就可以用这一对 ...
- PowerDesigner 16.5安装、激活
PowerDesigner安装 PowerDesigner激活 PowerDesigner运行
- 简单桶排序(Bucket Sort)
1.基本思想 桶排序是将待排序集合中处于同一个值域的元素存放在同一个桶中1. 2.算法设计2 假设有一个班级有5个人,这次期末他们分别考了5分,2分,4分,5分,8分(满分为10分).需要将这些分数从 ...
- php-cp(php连接池)扩展的安装
今天看到php有连接池的扩展,不管效果怎么样,都值得一试,这样才会有突破. 先从guthub上搜索源码:[ https://github.com/swoole/php-cp ] 通过命令clone到自 ...
- opencv python:图像二值化
import cv2 as cv import numpy as np import matplotlib.pyplot as plt # 二值图像就是将灰度图转化成黑白图,没有灰,在一个值之前为黑, ...
- Linux-VMware 15 虚拟机黑屏问题
VMware 15 虚拟机黑屏问题 最近终于舍弃win7,换了win10的操作系统... VM12不兼容,各种问题频出,于是换了VM15. 新装了kali2019.03,结果刚装好不久,在某一 ...
- The Preliminary Contest for ICPC Asia Xuzhou 2019 G Colorful String(回文自动机+dfs)
这题建立一棵回文树,然后用dfs搜索答案,但是有一点需要注意,就是打vis的标记时,如果标记为1,那么在好几个节点都对同一个字符i打过标记,此时的搜索从字符i点回溯,回到它的父亲节点,搜索其它的字符, ...