这个题目一开始感觉还是有点难的,这个模数这么大,根本就不知道怎么写,然后去搜了题解,知道了怎么去求当x很大的时候x的平方对一个数取模怎么样不会爆掉。

然后还顺便发现了一个规律就是当一个数更新一定次数之后就不会变化了。

然后这个题目就很好写了,就是一个区间求和和一个区间修改。现在还不确定如果不加一个找到的规律是不是会超时。

现在写完了,写的过程你会发现,这个每次必须更新到叶节点才可以,不然这个是有问题的,因为我们要求和,

所以如果不更新到叶节点,那就无法求和,然后我们再计算一下复杂度,如果直接是m*n*logn 那么复杂度就太高了

但是有了这个规律之后你会发现每个数最大平方30次就不变了,所以就是说复杂度就是30*n*logn 这个就可以接受了。

所以这个规律很重要,知道这个之后就很好写了。

这个模数有点特别可以记一下 2^63-2^31

#include <cstring>
#include <queue>
#include <cstdlib>
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <map>
#include <vector>
#define inf 0x3f3f3f3f
#define inf64 0x3f3f3f3f3f3f3f3f
using namespace std;
const int maxn = 1e5 + ;
typedef unsigned long long ull;
typedef long long ll;
const ull mod = ;
ll q_mul(ll a, ll b) {
ll ans = ;
while (b) {
if (b & ) {
ans = (ans + a) % mod;
}
a = (a + a) % mod;
b >>= ;
}
return ans;
}
ull a[maxn], sum[maxn * ], flag[maxn * ]; void push_up(int id) {
sum[id] = (sum[id << ] + sum[id << | ]) % mod;
if (flag[id << ] && flag[id << | ]) flag[id] = ;
} void build(int id, int l, int r) {
flag[id] = ;
if (l == r) {
sum[id] = a[l];
return;
}
int mid = (l + r) >> ;
build(id << , l, mid);
build(id << | , mid + , r);
push_up(id);
} ull query(int id, int l, int r, int x, int y) {
if (x <= l && y >= r) return sum[id];
int mid = (l + r) >> ;
ull ans = ;
if (x <= mid) ans += query(id << , l, mid, x, y) % mod, ans%mod;
if (y > mid) ans += query(id << | , mid + , r, x, y) % mod, ans %= mod;
return ans % mod;
} void update(int id, int l, int r, int x, int y) {
if (flag[id]) return;
if (l == r) {
ull ans = q_mul(sum[id], sum[id]);
if (ans == sum[id]) flag[id] = ;
sum[id] = ans;
return;
}
int mid = (l + r) >> ;
if (x <= mid) update(id << , l, mid, x, y);
if (y > mid) update(id << | , mid + , r, x, y);
push_up(id);
} int main() {
int t;
scanf("%d", &t);
for (int cas = ; cas <= t; cas++) {
int n, m;
scanf("%d%d", &n, &m);
for (int i = ; i <= n; i++) scanf("%llu", &a[i]);
build(, , n);
ull ans = ;
printf("Case #%d:\n", cas);
while (m--) {
int l, r;
scanf("%d%d", &l, &r);
ans += query(, , n, l, r);
ans %= mod;
printf("%llu\n", ans);
update(, , n, l, r);
}
}
return ;
}

线段树+找规律

W - Doom HDU - 5239 线段树 找取模的规律+求一个很大的数的平方对一个数取模的写法 特别的模数==2^63-2^31的更多相关文章

  1. hdu 4578 线段树(标记处理)

    Transformation Time Limit: 15000/8000 MS (Java/Others)    Memory Limit: 65535/65536 K (Java/Others) ...

  2. Doom HDU - 5239 (找规律+线段树)

     题目链接: D - Doom  HDU - 5239  题目大意:首先是T组测试样例,然后n个数,m次询问,然后每一次询问给你一个区间,问你这个这段区间的加上上一次的和是多少,查询完之后,这段区间里 ...

  3. hdu 5877 线段树(2016 ACM/ICPC Asia Regional Dalian Online)

    Weak Pair Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  4. hdu 3436 线段树 一顿操作

    Queue-jumpers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

  5. hdu 2871 线段树(各种操作)

    Memory Control Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  6. hdu 4052 线段树扫描线、奇特处理

    Adding New Machine Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  7. hdu 3954 线段树 (标记)

    Level up Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  8. hdu 1754 线段树(Max+单点修改)

    I Hate It Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  9. hdu 3974 线段树 将树弄到区间上

    Assign the task Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

随机推荐

  1. mysql命令行参数 --- 这些参数不同于 mysqldump 后的 那些参数(下边文章开头有链接) :2种类型的参数 含义是不一样的

    mysql命令行参数  --- 这些参数不同于  mysqldump  后的 那些参数   :2种类型的参数 含义是不一样的 一,mysql命令行参数 Usage: mysql [OPTIONS] [ ...

  2. 007-函数-C语言笔记

    007-函数-C语言笔记 学习目标 1.[了解]函数的分类 2.[掌握]函数的声明定义和调用 3.[掌握]函数的形参和实参 4.[掌握]带返回值的函数 5.[掌握]全局变量和局部变量 6.[了解]注释 ...

  3. Docker+Cmd+Cli+Git之前端工程化纪要(二)自定义类package.json文件管理模块包

    全新升级后的FE工作流为:使用FE命令包进行项目的初始化,其中包括项目初始化.拉取脚手架.私库拉取模块包或后期扩展的CI/CD等与本公司工作流相关的操作. 出现的问题如下: 脚手架工具的包依赖信息存放 ...

  4. 告诉你那里最受欢迎,python爬取全国13个城市旅游数据

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取http ...

  5. LCA基础 附例题(落谷)

    https://www.luogu.org/problemnew/solution/P3379 LCA叫做最短公共祖先,用来求距离树上两个节点最近的公共点: 常用倍增算法: #include<i ...

  6. vue2.x学习笔记(十)

    接着前面的内容:https://www.cnblogs.com/yanggb/p/12584237.html. 事件处理 使用javascript当然少不了事件处理,即使是vue也不会例外. 监听事件 ...

  7. mongodb connection refused because too many open connections: 819

    Env Debian 9 # 使用通用二进制方式安装 # mongod --version db version v3.4.21-2.19 git version: 2e0631f5e0d868dd5 ...

  8. Thymeleaf+SpringBoot+Mybatis实现的齐贤易游网旅游信息管理系统

    项目简介 项目来源于:https://github.com/liuyongfei-1998/root 本系统是基于Thymeleaf+SpringBoot+Mybatis.是非常标准的SSM三大框架( ...

  9. TensorFlow keras vgg16net的使用

    from tensorflow.python.keras.applications.vgg16 import VGG16,preprocess_input,decode_predictions fro ...

  10. Spring Cloud 系列之 Sleuth 链路追踪(二)

    本篇文章为系列文章,未读第一集的同学请猛戳这里:Spring Cloud 系列之 Sleuth 链路追踪(一) 本篇文章讲解 Sleuth 基于 Zipkin 存储链路追踪数据至 MySQL,Elas ...