我对KMP算法的理解
KMP算法的核心在于失配回溯表——pnext,相比于通过逐个比较来匹配字符串的朴素算法,KMP通过对模式串的分析,可以做到比较指针在主串上不回溯,一直向前。
1. KMP如何实现不回溯?
对于主串 t0 t1....tj,模式串 p在 pi处与 tj 失配,假设 p0~pi-1 存在最长相等前后缀,可以证明将模式串移动至该前缀的后一位,再将其与 tj进行比较,不会漏掉可能的匹配,并且可以大大加速匹配过程。并且这种移动与具体主串无关,仅仅与模式串的失配位置 i 有关,可以通过提前分析模式串,得到失配后的串移动表pnext。
2. 如何得到pnext?
pnext表实质上记录的是模式串中前 i 个元素形成的子串,其最长相等前后缀的大小。即pnext [ i ] 记录着p0到pi-1的子串最长相等前后缀的大小。
具体实现方法就是用模式串自身去逐个比对自身,由前后缀的定义可知,头元素没有相等前后缀,pnext [1]=0。用第0个元素去比对第1个元素,当p0=p1时,pnext [2]=1,接下来比较p1是否等p2;否则pnext [2]=0,接下来继续比较p0是否等p2.......
更一般的,当已知模式串中pnext [ i-1]=k-1,即 p0~pk-2与 pi-k~pi-2求pnext [ i ]。分两种情况:
1)当pi-1=pk-1时,对于i-1的最长相等前后缀,比i-2要多1,那么可以得到pnext [ i ]=k,指针后移,开始求pnext [ i+1];
2)当pi-1!=pk-1时,这时我们需要在 p0~pk-1中继续向前找,在 pi-k~pi-1中继续向后找,寻找新的最长相等前后缀。假设我们寻找到了该串,即前缀为 p0~px-1,后缀为 pi-x~pi-1,那么由于pi-1!=pk-1,而pi-1=px-1。表明px-1!=pk-1,这说明串p0~px-2一定是pk-1的最长相等前后缀串,即pnext [ k ]=x-1。因此当pi-1!=pk-1时,可以直接比对pi-1是否等于ppnext[ k ]!!!此时问题变为:已知模式串中pnext [ i-1]=k-1,求pnext [ i ],其中i-1实际为k,k-1实际值为x-1。若比对成功,则pnext [ i ]=x,指针后移,否则直接比对pi-1是否等于ppnext[ pnext[ k ] ]。问题形成了递归。
将这种递归求值关系与边界条件相结合,我们注意到当p1 !=p0时,pnext [2]=0= -1+1,可以设pnext [0]=-1,则整个求pnext表值过程可以用一个函数统一起来。求值过程从1号位值开始。
def my_pnext(p):
'''模式串的pnext表生成函数'''
m=len(p)
pnext=[-1]*m
i,k=0,-1
while i<m-1:
'''当k=-1时,说明pi != p0 ,没有最大相等前后缀,此时pnext[i]应为0
同样可以将i,k都加1,进行赋值'''
if k==-1 or p[i]==p[k]:
i,k=i+1,k+1
pnext[i]=k
else:
k=pnext[k]
return pnext
相应的KMP函数为:
def my_kmp(t,p,pnext):
'''t是主串,p是模式串,pnext是模式串kmp算法的回溯指针表'''
j,i=0,0
n,m=len(t),len(p)
while j<n and i<m:
if i==-1 or t[j]==p[i]:
j,i=j+1,i+1
else:
i=pnext[i]
if i==m:
return j-i
return -1
我对KMP算法的理解的更多相关文章
- 自己对kmp算法的理解,借由 28. 实现 strStr() 为例
做题思路 or 感想 : 就借由这道题来理解一下kmp算法吧 kmp算法的操作过程我觉得有句话很合适 :KMP 算法永不回退 目标字符串 的指针 i,不走回头路(不会重复扫描 目标字符串),而是借助 ...
- KMP算法 --- 深入理解next数组
在KMP算法中有个数组,叫做前缀数组,也有的叫next数组. 每一个子串有一个固定的next数组,它记录着字符串匹配过程中失配情况下可以向前多跳几个字符. 当然它描述的也是子串的对称程度,程度越高,值 ...
- KMP算法的理解
---恢复内容开始--- 在看数据结构的串的讲解的时候,讲到了KMP算法——一个经典的字符串匹配的算法,具体背景自行百度之,是一个很牛的图灵奖得主和他的学生提出的. 一开始看算法的时候很困惑,但是算法 ...
- 关于《数据结构》课本KMP算法的理解
数据结构课上讲的KMP算法和我在ACM中学习的KMP算法是有区别的,这里我对课本上的KMP算法给出我的一些想法. 原理和之前的KMP是一样的https://www.cnblogs.com/wkfvaw ...
- 关于KMP算法的理解
上次因为haipz组织的比赛中有道题必须用到KMP算法,因此赛后便了解了下它,在仔细拜读了孤~影神牛的文章之后有种茅塞顿开的感觉,再次ORZ. 附上链接http://www.cnblogs.com/y ...
- KMP算法自我理解 和 模板
字符串 abcd abc abcd abc 匹配串 cdabcd 匹配串的 next 0 0 0 0 1 2: 开始匹配 abcd abc abcd abc cd abc d a,d 匹配失 ...
- 第十一章 串 (c3)KMP算法:理解next[]表
- kmp算法初步理解
123456789 abbdaxnds Next 01212 第三位看第二位b,第二位和第三位相同,都是b,所以第三位的next是第二位的next加1,即1+1=2 第四位看第三位b,第四位d与第 ...
- KMP算法中next函数的理解
首先要感谢http://blog.csdn.net/v_july_v/article/details/7041827以及http://blog.chinaunix.net/uid-27164517-i ...
随机推荐
- 前端构建工具gulpjs的使用介绍及技巧【转载】
转载至:http://www.cnblogs.com/2050/p/4198792.html gulpjs是一个前端构建工具,与gruntjs相比,gulpjs无需写一大堆繁杂的配置参数,API也非常 ...
- 使用 Pandas 的 to_excel() 方法来将多个 csv 文件合并到一个 xlsx 的不同 sheets 内
这几天在用 Python3 研究一个爬虫,最后一个需求是把爬下来的20+个csv文件整合到一个excel表里的不同sheets. 初版的核心代码如下: while year <= 2018: c ...
- 网络安全从入门到精通 ( 第二章-5) 后端基础PHP—简介及基本函数-下
本文内容: 循环语句 PHP获取表单信息 PHP操作Mysql语句 语法SQL注入 1,循环语句: for循环: 语法:for($x=0,$x<10;$x++){执行语句;} 注意:$x++,先 ...
- Git 的简单使用及ssh配置问题-赖大大
软件安装 第一步当然是安装啦. 官方网址:https://git-scm.com/ 具体操作 在你本地电脑的文件夹里右击鼠标,选Git base here 显然,你是在本地仓库的master分支上,通 ...
- VSCode 配置C++开发环境
目录 安装VSCode应用程序 安装相关插件 汉化插件 C++编辑器插件 编写配置文件 tasks.json launch.json c_cpp_properties.json 第一步.安装VSCod ...
- android studio 导入RecyclerView
- 修改imx6ull开机LOGO(一)
imx6ull启动的时候默认显示uboot自带的开机画面,按照如下步骤修改为我们想要的开机画面,如下: 首先去掉液晶屏右上角的打印信息 修改/drivers/video/cfb_console.c ...
- [最短路,floyd] Codeforces 1204C Anna, Svyatoslav and Maps
题目:http://codeforces.com/contest/1204/problem/C C. Anna, Svyatoslav and Maps time limit per test 2 s ...
- 自定义上下文菜单,contextmenu事件
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Django 视图笔记
视图 概述 作用:视图接受web请求,并响应 本质:python中的一个函数 响应: 网页;重定向:错误视图(404.500) json数据 url配置 配置流程 1:指定根基url配置文件 sett ...