Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.

We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates. 
 
Figure A Sample Input of Radar Installations

Input

The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.

The input is terminated by a line containing pair of zeros

Output

For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.

Sample Input

3 2
1 2
-3 1
2 1 1 2
0 2 0 0

Sample Output

Case 1: 2
Case 2: 1 简述:每个island与X轴都有最多2个交点,求最少点满足与所有区间相交
思路:区间选点问题,将每个区间右边递增排序后寻找即可,代码如下:
#define sqr(x) ((x)*(x))

const int maxm = ;

struct Node {
double l, r;
bool operator< (const Node &a) const {
return r < a.r;
}
} Nodes[maxm]; int d, n, sum, kase = ; int main() {
while(scanf("%d%d", &n, &d) && n) {
printf("Case %d: ", ++kase);
bool flag = true;
sum = ;
for (int i = ; i < n; ++i) {
double tx, ty, tmp;
scanf("%lf%lf", &tx, &ty); //x = tx -+ sqrt(d^2 - y0 ^2 )
if(d < ty) {
flag = false;
sum = -;
}
tmp = sqrt(sqr(d) - sqr(ty));
Nodes[i].l = tx - tmp, Nodes[i].r = tx + tmp;
}
if(flag) {
sort(Nodes, Nodes + n);
double maxr = Nodes[].r;
for (int i = ; i < n; ++i) {
if(maxr < Nodes[i].l) {
maxr = Nodes[i].r;
++sum;
}
}
}
printf("%d\n", sum);
}
return ;
}

注意在判断ty>d的时候不能提前退出,要读取完

补:

在区间选点问题上,要右端点进行排序,因为要找一个现有区间的公共点,若是左端点,会出现漏解的情况,例如:

												

Day3-C-Radar Installation POJ1328的更多相关文章

  1. [POJ1328]Radar Installation

    [POJ1328]Radar Installation 试题描述 Assume the coasting is an infinite straight line. Land is in one si ...

  2. POJ1328——Radar Installation

    Radar Installation Description Assume the coasting is an infinite straight line. Land is in one side ...

  3. POJ--1328 Radar Installation(贪心 排序)

    题目:Radar Installation 对于x轴上方的每个建筑 可以计算出x轴上一段区间可以包含这个点 所以就转化成 有多少个区间可以涵盖这所有的点 排序之后贪心一下就ok 用cin 好像一直t看 ...

  4. POJ1328 Radar Installation 【贪心&#183;区间选点】

    Radar Installation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 54593   Accepted: 12 ...

  5. 【贪心】「poj1328」Radar Installation

    建模:二维转一维:贪心 Description Assume the coasting is an infinite straight line. Land is in one side of coa ...

  6. POJ1328 Radar Installation 解题报告

    Description Assume the coasting is an infinite straight line. Land is in one side of coasting, sea i ...

  7. POJ 1328 Radar Installation 贪心 A

    POJ 1328 Radar Installation https://vjudge.net/problem/POJ-1328 题目: Assume the coasting is an infini ...

  8. Radar Installation

    Radar Installation 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=86640#problem/C 题目: De ...

  9. Radar Installation(贪心)

    Radar Installation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 56826   Accepted: 12 ...

  10. 贪心 POJ 1328 Radar Installation

    题目地址:http://poj.org/problem?id=1328 /* 贪心 (转载)题意:有一条海岸线,在海岸线上方是大海,海中有一些岛屿, 这些岛的位置已知,海岸线上有雷达,雷达的覆盖半径知 ...

随机推荐

  1. 精简DOCKER环境

    docker system prune -a WARNING! This will remove:  - all stopped containers  - all networks not used ...

  2. Js 类继承 extends

    html 及 js 代码 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&q ...

  3. xadmin 后台管理

    xadmin后台管理 安装:luffy虚拟环境下 >: pip install https://codeload.github.com/sshwsfc/xadmin/zip/django2 注册 ...

  4. Python学习第二十一课——Mysql 对数据库的基本操作

    数据库操作(DDL) 在数据库下创建表(create_table) 创建表代码块: CREATE TABLE employee( id TINYINT PRIMARY KEY auto_increme ...

  5. Java并发编程(四):并发容器(转)

    解决并发情况下的容器线程安全问题的.给多线程环境准备一个线程安全的容器对象. 线程安全的容器对象: Vector, Hashtable.线程安全容器对象,都是使用 synchronized 方法实现的 ...

  6. 图解jvm--(四)内存模型

    内存模型 java 内存模型 很多人将[java 内存结构]与[java 内存模型]傻傻分不清,[java 内存模型]是 Java Memory Model(JMM)的意思. 简单的说,JMM 定义了 ...

  7. 题解【[Ynoi2012]NOIP2015洋溢着希望】

    \[ \texttt{Preface} \] 第二道 Ynoi 的题,纪念一下. 这可能是我唯一可以自己做的 Ynoi 题了. \[ \texttt{Description} \] 维护一个长度为 \ ...

  8. word2vec 构建中文词向量

    词向量作为文本的基本结构——词的模型,以其优越的性能,受到自然语言处理领域研究人员的青睐.良好的词向量可以达到语义相近的词在词向量空间里聚集在一起,这对后续的文本分类,文本聚类等等操作提供了便利,本文 ...

  9. 吴裕雄--天生自然PythonDjangoWeb企业开发:学员管理系统- 前台

    开发首页 做一个简单的用户提交申请的表单页面. 首先在student/views.py文件中编写下面的代码: # -*- coding: utf-8 -*- from __future__ impor ...

  10. day 10 作业

    # 2.写函数,接收n个数字,求这些参数数字的和. def sum_func(*args): total = 0 for i in args: total += i return total prin ...